{"id":"https://openalex.org/W2016474290","doi":"https://doi.org/10.1109/bibm.2013.6732528","title":"Approximate Bayesian computation for estimating rate constants in biochemical reaction systems","display_name":"Approximate Bayesian computation for estimating rate constants in biochemical reaction systems","publication_year":2013,"publication_date":"2013-12-01","ids":{"openalex":"https://openalex.org/W2016474290","doi":"https://doi.org/10.1109/bibm.2013.6732528","mag":"2016474290"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/bibm.2013.6732528","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5103830329","display_name":"Qianqian Wu","orcid":null},"institutions":[{"id":"https://openalex.org/I56590836","display_name":"Monash University","ror":"https://ror.org/02bfwt286","country_code":"AU","type":"funder","lineage":["https://openalex.org/I56590836"]}],"countries":["AU"],"is_corresponding":false,"raw_author_name":"Qianqian Wu","raw_affiliation_strings":["Sch. of Math. Sci., Monash Univ., Melbourne, VIC, Australia"],"affiliations":[{"raw_affiliation_string":"Sch. of Math. Sci., Monash Univ., Melbourne, VIC, Australia","institution_ids":["https://openalex.org/I56590836"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5039491324","display_name":"Kate Smith\u2010Miles","orcid":"https://orcid.org/0000-0003-2718-7680"},"institutions":[{"id":"https://openalex.org/I56590836","display_name":"Monash University","ror":"https://ror.org/02bfwt286","country_code":"AU","type":"funder","lineage":["https://openalex.org/I56590836"]}],"countries":["AU"],"is_corresponding":false,"raw_author_name":"Kate Smith-Miles","raw_affiliation_strings":["Sch. of Math. Sci., Monash Univ., Melbourne, VIC, Australia"],"affiliations":[{"raw_affiliation_string":"Sch. of Math. Sci., Monash Univ., Melbourne, VIC, Australia","institution_ids":["https://openalex.org/I56590836"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5039097797","display_name":"Tianhai Tian","orcid":"https://orcid.org/0000-0001-6191-0209"},"institutions":[{"id":"https://openalex.org/I56590836","display_name":"Monash University","ror":"https://ror.org/02bfwt286","country_code":"AU","type":"funder","lineage":["https://openalex.org/I56590836"]}],"countries":["AU"],"is_corresponding":false,"raw_author_name":"Tianhai Tian","raw_affiliation_strings":["Sch. of Math. Sci., Monash Univ., Melbourne, VIC, Australia"],"affiliations":[{"raw_affiliation_string":"Sch. of Math. Sci., Monash Univ., Melbourne, VIC, Australia","institution_ids":["https://openalex.org/I56590836"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.79,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":3,"citation_normalized_percentile":{"value":0.449275,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":76,"max":78},"biblio":{"volume":"162","issue":null,"first_page":"416","last_page":"421"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T12056","display_name":"Markov Chains and Monte Carlo Methods","score":1.0,"subfield":{"id":"https://openalex.org/subfields/2613","display_name":"Statistics and Probability"},"field":{"id":"https://openalex.org/fields/26","display_name":"Mathematics"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T12056","display_name":"Markov Chains and Monte Carlo Methods","score":1.0,"subfield":{"id":"https://openalex.org/subfields/2613","display_name":"Statistics and Probability"},"field":{"id":"https://openalex.org/fields/26","display_name":"Mathematics"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12072","display_name":"Machine Learning and Algorithms","score":0.9941,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11152","display_name":"Stochastic processes and statistical mechanics","score":0.9931,"subfield":{"id":"https://openalex.org/subfields/2610","display_name":"Mathematical Physics"},"field":{"id":"https://openalex.org/fields/26","display_name":"Mathematics"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/approximate-bayesian-computation","display_name":"Approximate Bayesian Computation","score":0.917547},{"id":"https://openalex.org/keywords/statistical-inference","display_name":"Statistical Inference","score":0.44546592}],"concepts":[{"id":"https://openalex.org/C2779377595","wikidata":"https://www.wikidata.org/wiki/Q21045424","display_name":"Approximate Bayesian computation","level":3,"score":0.917547},{"id":"https://openalex.org/C2776214188","wikidata":"https://www.wikidata.org/wiki/Q408386","display_name":"Inference","level":2,"score":0.68526924},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.6829581},{"id":"https://openalex.org/C45374587","wikidata":"https://www.wikidata.org/wiki/Q12525525","display_name":"Computation","level":2,"score":0.6817404},{"id":"https://openalex.org/C152662350","wikidata":"https://www.wikidata.org/wiki/Q815297","display_name":"Systems biology","level":2,"score":0.49461862},{"id":"https://openalex.org/C160234255","wikidata":"https://www.wikidata.org/wiki/Q812535","display_name":"Bayesian inference","level":3,"score":0.4930069},{"id":"https://openalex.org/C107673813","wikidata":"https://www.wikidata.org/wiki/Q812534","display_name":"Bayesian probability","level":2,"score":0.45064008},{"id":"https://openalex.org/C134261354","wikidata":"https://www.wikidata.org/wiki/Q938438","display_name":"Statistical inference","level":2,"score":0.44546592},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.38987452},{"id":"https://openalex.org/C126255220","wikidata":"https://www.wikidata.org/wiki/Q141495","display_name":"Mathematical optimization","level":1,"score":0.36705005},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.24676764},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.24469426},{"id":"https://openalex.org/C105795698","wikidata":"https://www.wikidata.org/wiki/Q12483","display_name":"Statistics","level":1,"score":0.1321277},{"id":"https://openalex.org/C60644358","wikidata":"https://www.wikidata.org/wiki/Q128570","display_name":"Bioinformatics","level":1,"score":0.114189744},{"id":"https://openalex.org/C86803240","wikidata":"https://www.wikidata.org/wiki/Q420","display_name":"Biology","level":0,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/bibm.2013.6732528","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":21,"referenced_works":["https://openalex.org/W1509329028","https://openalex.org/W1968856189","https://openalex.org/W1973099219","https://openalex.org/W1975017523","https://openalex.org/W1985937069","https://openalex.org/W2033850030","https://openalex.org/W2034795216","https://openalex.org/W2045973738","https://openalex.org/W2112794562","https://openalex.org/W2116416291","https://openalex.org/W2120196508","https://openalex.org/W2121008927","https://openalex.org/W2122055675","https://openalex.org/W2140484213","https://openalex.org/W2141239733","https://openalex.org/W2148351363","https://openalex.org/W2151729750","https://openalex.org/W2152246075","https://openalex.org/W2155418451","https://openalex.org/W2167543722","https://openalex.org/W2168282770"],"related_works":["https://openalex.org/W4362583294","https://openalex.org/W4289242714","https://openalex.org/W4287824571","https://openalex.org/W4242918646","https://openalex.org/W3113268434","https://openalex.org/W3012988968","https://openalex.org/W2971727066","https://openalex.org/W2966726156","https://openalex.org/W2902432378","https://openalex.org/W2226294016"],"abstract_inverted_index":{"To":[0,75],"study":[1],"the":[2,20,33,40,54,64,70,101,109,120,129,136,141,150,155,162,166],"dynamic":[3],"properties":[4],"of":[5,39,103,106,111,122,128,154,173],"complex":[6],"biological":[7,71],"systems,":[8],"mathematical":[9,50],"modeling":[10,24],"has":[11],"been":[12],"used":[13],"widely":[14],"in":[15,35,49,79,165,185],"systems":[16,72,147],"biology.":[17,37],"Apart":[18],"from":[19],"well-established":[21],"knowledge":[22],"for":[23,87,161,176,181],"techniques,":[25],"there":[26],"are":[27,67,73],"still":[28],"some":[29],"difficulties":[30],"while":[31],"understanding":[32],"dynamics":[34],"system":[36],"One":[38],"major":[41],"challenges":[42],"is":[43,60],"how":[44],"to":[45,99,144,148],"infer":[46],"unknown":[47,163],"parameters":[48,164],"models":[51],"based":[52],"on":[53,108,114,135],"experimentally":[55],"observed":[56],"data":[57,66,131],"sets.":[58],"This":[59,168],"extremely":[61],"difficult":[62],"when":[63],"experimental":[65],"sparse":[68],"and":[69,94,125,152,157],"stochastic.":[74],"tackle":[76],"this":[77,80],"problem,":[78],"work":[81,169],"we":[82,117],"revised":[83],"one":[84],"computation":[85,92],"method":[86,143],"inference":[88,179],"called":[89],"approximate":[90],"Bayesian":[91],"(ABC)":[93],"conducted":[95],"extensive":[96],"computing":[97],"tests":[98],"examine":[100],"influence":[102,134],"a":[104,171],"number":[105,121,172],"factors":[107],"performance":[110],"ABC.":[112],"Based":[113],"simulation":[115],"results,":[116],"found":[118],"that":[119],"stochastic":[123,146],"simulations":[124],"step":[126],"size":[127],"observation":[130],"have":[132],"substantial":[133],"estimation":[137],"accuracy.":[138],"We":[139],"applied":[140],"ABC":[142,156],"two":[145],"test":[149],"efficiency":[151],"effectiveness":[153],"obtained":[158],"promising":[159],"approximation":[160],"systems.":[167,188],"raised":[170],"important":[174],"issues":[175],"designing":[177],"effective":[178],"methods":[180],"estimating":[182],"rate":[183],"constants":[184],"biochemical":[186],"reaction":[187]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2016474290","counts_by_year":[{"year":2016,"cited_by_count":2},{"year":2014,"cited_by_count":1}],"updated_date":"2025-04-17T15:49:51.262978","created_date":"2016-06-24"}