{"id":"https://openalex.org/W2169712481","doi":"https://doi.org/10.1109/bibe.2005.5","title":"A Multi-Level Approach to SCOP Fold Recognition","display_name":"A Multi-Level Approach to SCOP Fold Recognition","publication_year":2006,"publication_date":"2006-10-11","ids":{"openalex":"https://openalex.org/W2169712481","doi":"https://doi.org/10.1109/bibe.2005.5","mag":"2169712481"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/bibe.2005.5","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5021627780","display_name":"Keith Marsolo","orcid":"https://orcid.org/0000-0002-4416-1549"},"institutions":[{"id":"https://openalex.org/I52357470","display_name":"The Ohio State University","ror":"https://ror.org/00rs6vg23","country_code":"US","type":"education","lineage":["https://openalex.org/I52357470"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"K. Marsolo","raw_affiliation_strings":["Department of Computer Science and Engineering, Ohio State University, USA"],"affiliations":[{"raw_affiliation_string":"Department of Computer Science and Engineering, Ohio State University, USA","institution_ids":["https://openalex.org/I52357470"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100755351","display_name":"Srinivasan Parthasarathy","orcid":"https://orcid.org/0000-0002-6062-6449"},"institutions":[{"id":"https://openalex.org/I148283060","display_name":"Lawrence Berkeley National Laboratory","ror":"https://ror.org/02jbv0t02","country_code":"US","type":"facility","lineage":["https://openalex.org/I1330989302","https://openalex.org/I148283060","https://openalex.org/I39565521"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"S. Parthasarathy","raw_affiliation_strings":["Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA"],"affiliations":[{"raw_affiliation_string":"Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA","institution_ids":["https://openalex.org/I148283060"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5102823200","display_name":"Chris Ding","orcid":"https://orcid.org/0009-0009-3374-1941"},"institutions":[{"id":"https://openalex.org/I52357470","display_name":"The Ohio State University","ror":"https://ror.org/00rs6vg23","country_code":"US","type":"education","lineage":["https://openalex.org/I52357470"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"C. Ding","raw_affiliation_strings":["Department of Computer Science and Engineering, Ohio State University, USA"],"affiliations":[{"raw_affiliation_string":"Department of Computer Science and Engineering, Ohio State University, USA","institution_ids":["https://openalex.org/I52357470"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":2,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":1.074,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":28,"citation_normalized_percentile":{"value":0.802231,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":89,"max":90},"biblio":{"volume":null,"issue":null,"first_page":"57","last_page":"64"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T12254","display_name":"Machine Learning in Bioinformatics","score":0.9998,"subfield":{"id":"https://openalex.org/subfields/1312","display_name":"Molecular Biology"},"field":{"id":"https://openalex.org/fields/13","display_name":"Biochemistry, Genetics and Molecular Biology"},"domain":{"id":"https://openalex.org/domains/1","display_name":"Life Sciences"}},"topics":[{"id":"https://openalex.org/T12254","display_name":"Machine Learning in Bioinformatics","score":0.9998,"subfield":{"id":"https://openalex.org/subfields/1312","display_name":"Molecular Biology"},"field":{"id":"https://openalex.org/fields/13","display_name":"Biochemistry, Genetics and Molecular Biology"},"domain":{"id":"https://openalex.org/domains/1","display_name":"Life Sciences"}},{"id":"https://openalex.org/T10044","display_name":"Protein Structure and Dynamics","score":0.9982,"subfield":{"id":"https://openalex.org/subfields/1312","display_name":"Molecular Biology"},"field":{"id":"https://openalex.org/fields/13","display_name":"Biochemistry, Genetics and Molecular Biology"},"domain":{"id":"https://openalex.org/domains/1","display_name":"Life Sciences"}},{"id":"https://openalex.org/T10521","display_name":"RNA and protein synthesis mechanisms","score":0.9861,"subfield":{"id":"https://openalex.org/subfields/1312","display_name":"Molecular Biology"},"field":{"id":"https://openalex.org/fields/13","display_name":"Biochemistry, Genetics and Molecular Biology"},"domain":{"id":"https://openalex.org/domains/1","display_name":"Life Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/sequence","display_name":"Sequence (biology)","score":0.48460492}],"concepts":[{"id":"https://openalex.org/C52001869","wikidata":"https://www.wikidata.org/wiki/Q812530","display_name":"Naive Bayes classifier","level":3,"score":0.72387767},{"id":"https://openalex.org/C53942344","wikidata":"https://www.wikidata.org/wiki/Q951651","display_name":"Fold (higher-order function)","level":2,"score":0.6969458},{"id":"https://openalex.org/C95623464","wikidata":"https://www.wikidata.org/wiki/Q1096149","display_name":"Classifier (UML)","level":2,"score":0.66547996},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.65160036},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.60002404},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.58254623},{"id":"https://openalex.org/C2778112365","wikidata":"https://www.wikidata.org/wiki/Q3511065","display_name":"Sequence (biology)","level":2,"score":0.48460492},{"id":"https://openalex.org/C207201462","wikidata":"https://www.wikidata.org/wiki/Q182505","display_name":"Bayes' theorem","level":3,"score":0.44847888},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.41982496},{"id":"https://openalex.org/C107673813","wikidata":"https://www.wikidata.org/wiki/Q812534","display_name":"Bayesian probability","level":2,"score":0.20720786},{"id":"https://openalex.org/C86803240","wikidata":"https://www.wikidata.org/wiki/Q420","display_name":"Biology","level":0,"score":0.1412555},{"id":"https://openalex.org/C12267149","wikidata":"https://www.wikidata.org/wiki/Q282453","display_name":"Support vector machine","level":2,"score":0.13751233},{"id":"https://openalex.org/C199360897","wikidata":"https://www.wikidata.org/wiki/Q9143","display_name":"Programming language","level":1,"score":0.0},{"id":"https://openalex.org/C54355233","wikidata":"https://www.wikidata.org/wiki/Q7162","display_name":"Genetics","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/bibe.2005.5","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":17,"referenced_works":["https://openalex.org/W1592664314","https://openalex.org/W1780185704","https://openalex.org/W1912123407","https://openalex.org/W1984804689","https://openalex.org/W2006345381","https://openalex.org/W2010006687","https://openalex.org/W2047672715","https://openalex.org/W2085277871","https://openalex.org/W2089967664","https://openalex.org/W2106030336","https://openalex.org/W2109109045","https://openalex.org/W2112076978","https://openalex.org/W2125055259","https://openalex.org/W2189228361","https://openalex.org/W2911964244","https://openalex.org/W2912934387","https://openalex.org/W4212883601"],"related_works":["https://openalex.org/W4288333917","https://openalex.org/W4251019512","https://openalex.org/W3208476663","https://openalex.org/W2948288905","https://openalex.org/W2780177025","https://openalex.org/W2508925980","https://openalex.org/W2149078746","https://openalex.org/W1981288096","https://openalex.org/W1548705586","https://openalex.org/W1493451373"],"abstract_inverted_index":{"The":[0],"classification":[1,45,60,92,133],"of":[2,18,26,42,53,79,132,148,165],"proteins":[3,96],"based":[4,97],"on":[5,98],"their":[6,99],"structure":[7,35],"can":[8],"play":[9],"an":[10,39,144],"important":[11],"role":[12],"in":[13,159],"the":[14,22,31,50,63,66,80,115,155,160,163],"deduction":[15],"or":[16],"discovery":[17],"protein":[19,28,107],"function.":[20],"However,":[21],"relatively":[23],"low":[24],"number":[25,52,131],"solved":[27],"structures":[29],"and":[30,36,120,138],"unknown":[32],"relationship":[33],"between":[34,77],"sequence":[37],"requires":[38],"alternative":[40],"method":[41],"representation":[43],"for":[44,58,90],"to":[46,75,104],"be":[47],"effective.":[48],"Furthermore,":[49],"large":[51],"potential":[54],"folds":[55,119],"causes":[56],"problems":[57],"many":[59],"strategies,":[61],"increasing":[62],"likelihood":[64],"that":[65,93],"classifier":[67],"will":[68],"reach":[69],"a":[70,87,106,110,130,166],"local":[71],"optima":[72],"while":[73],"trying":[74],"distinguish":[76],"all":[78],"possible":[81],"structural":[82,91],"categories.":[83],"Here":[84],"we":[85,128],"present":[86],"hierarchical":[88],"strategy":[89,142],"first":[94],"partitions":[95],"SCOP":[100,118],"class":[101],"before":[102],"attempting":[103],"assign":[105],"fold.":[108],"Using":[109],"well-known":[111],"dataset":[112],"derived":[113],"from":[114],"27":[116],"most-populated":[117],"several":[121],"sequence-based":[122],"descriptor":[123],"properties":[124],"as":[125],"input":[126],"features,":[127],"test":[129],"methods,":[134],"including":[135],"Naive":[136],"Bayes":[137],"Boosted":[139],"C4.5.":[140],"Our":[141],"achieves":[143],"average":[145],"fold":[146],"recognition":[147],"74%,":[149],"which":[150],"is":[151],"significantly":[152],"higher":[153],"than":[154],"56-60%":[156],"previously":[157],"reported":[158],"literature,":[161],"indicating":[162],"effectiveness":[164],"multi-level":[167],"approach.":[168]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2169712481","counts_by_year":[{"year":2023,"cited_by_count":1},{"year":2022,"cited_by_count":1},{"year":2020,"cited_by_count":2},{"year":2019,"cited_by_count":1},{"year":2018,"cited_by_count":2},{"year":2016,"cited_by_count":1},{"year":2015,"cited_by_count":1},{"year":2014,"cited_by_count":2},{"year":2013,"cited_by_count":2},{"year":2012,"cited_by_count":2}],"updated_date":"2024-12-08T06:37:11.342844","created_date":"2016-06-24"}