{"id":"https://openalex.org/W2924298175","doi":"https://doi.org/10.1109/bdcloud.2018.00142","title":"A Neural Network Model for Cache and Memory Prediction of Neural Networks","display_name":"A Neural Network Model for Cache and Memory Prediction of Neural Networks","publication_year":2018,"publication_date":"2018-12-01","ids":{"openalex":"https://openalex.org/W2924298175","doi":"https://doi.org/10.1109/bdcloud.2018.00142","mag":"2924298175"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/bdcloud.2018.00142","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5018818656","display_name":"Sai Sha","orcid":"https://orcid.org/0000-0003-2506-7212"},"institutions":[{"id":"https://openalex.org/I4210136793","display_name":"Peng Cheng Laboratory","ror":"https://ror.org/03qdqbt06","country_code":"CN","type":"funder","lineage":["https://openalex.org/I4210136793"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Sai Sha","raw_affiliation_strings":["Peng Cheng Laboratory"],"affiliations":[{"raw_affiliation_string":"Peng Cheng Laboratory","institution_ids":["https://openalex.org/I4210136793"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5028194980","display_name":"Yingwei Luo","orcid":"https://orcid.org/0000-0002-7903-0717"},"institutions":[{"id":"https://openalex.org/I4210136793","display_name":"Peng Cheng Laboratory","ror":"https://ror.org/03qdqbt06","country_code":"CN","type":"funder","lineage":["https://openalex.org/I4210136793"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Yingwei Luo","raw_affiliation_strings":["Peng Cheng Laboratory"],"affiliations":[{"raw_affiliation_string":"Peng Cheng Laboratory","institution_ids":["https://openalex.org/I4210136793"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5101925944","display_name":"Zhenlin Wang","orcid":"https://orcid.org/0000-0002-0429-4371"},"institutions":[{"id":"https://openalex.org/I11957088","display_name":"Michigan Technological University","ror":"https://ror.org/0036rpn28","country_code":"US","type":"funder","lineage":["https://openalex.org/I11957088"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Zhenlin Wang","raw_affiliation_strings":["Michigan Technological University, Michigan, USA"],"affiliations":[{"raw_affiliation_string":"Michigan Technological University, Michigan, USA","institution_ids":["https://openalex.org/I11957088"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5100395154","display_name":"Xiaolin Wang","orcid":"https://orcid.org/0000-0002-6951-1613"},"institutions":[{"id":"https://openalex.org/I4210136793","display_name":"Peng Cheng Laboratory","ror":"https://ror.org/03qdqbt06","country_code":"CN","type":"funder","lineage":["https://openalex.org/I4210136793"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Xiaolin Wang","raw_affiliation_strings":["Peng Cheng Laboratory"],"affiliations":[{"raw_affiliation_string":"Peng Cheng Laboratory","institution_ids":["https://openalex.org/I4210136793"]}]}],"institution_assertions":[],"countries_distinct_count":2,"institutions_distinct_count":2,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.0,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":62},"biblio":{"volume":null,"issue":null,"first_page":"972","last_page":"978"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10320","display_name":"Neural Networks and Applications","score":0.9985,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10320","display_name":"Neural Networks and Applications","score":0.9985,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12676","display_name":"Machine Learning and ELM","score":0.9961,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10036","display_name":"Advanced Neural Network Applications","score":0.9954,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/memory-footprint","display_name":"Memory footprint","score":0.6442262},{"id":"https://openalex.org/keywords/cache-pollution","display_name":"Cache pollution","score":0.49093536},{"id":"https://openalex.org/keywords/cache-only-memory-architecture","display_name":"Cache-only memory architecture","score":0.44132194}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.85086346},{"id":"https://openalex.org/C115537543","wikidata":"https://www.wikidata.org/wiki/Q165596","display_name":"Cache","level":2,"score":0.7765956},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.7017877},{"id":"https://openalex.org/C74912251","wikidata":"https://www.wikidata.org/wiki/Q6815727","display_name":"Memory footprint","level":2,"score":0.6442262},{"id":"https://openalex.org/C81363708","wikidata":"https://www.wikidata.org/wiki/Q17084460","display_name":"Convolutional neural network","level":2,"score":0.5523426},{"id":"https://openalex.org/C201148951","wikidata":"https://www.wikidata.org/wiki/Q5015976","display_name":"Cache coloring","level":4,"score":0.51512754},{"id":"https://openalex.org/C113166858","wikidata":"https://www.wikidata.org/wiki/Q5015981","display_name":"Cache pollution","level":5,"score":0.49093536},{"id":"https://openalex.org/C108583219","wikidata":"https://www.wikidata.org/wiki/Q197536","display_name":"Deep learning","level":2,"score":0.4751822},{"id":"https://openalex.org/C38556500","wikidata":"https://www.wikidata.org/wiki/Q13404475","display_name":"Cache algorithms","level":4,"score":0.4712128},{"id":"https://openalex.org/C2779960059","wikidata":"https://www.wikidata.org/wiki/Q7113681","display_name":"Overhead (engineering)","level":2,"score":0.46362308},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.46237752},{"id":"https://openalex.org/C3720319","wikidata":"https://www.wikidata.org/wiki/Q5015937","display_name":"Cache-only memory architecture","level":5,"score":0.44132194},{"id":"https://openalex.org/C177973122","wikidata":"https://www.wikidata.org/wiki/Q7860946","display_name":"Types of artificial neural networks","level":4,"score":0.41966003},{"id":"https://openalex.org/C147168706","wikidata":"https://www.wikidata.org/wiki/Q1457734","display_name":"Recurrent neural network","level":3,"score":0.40554437},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.38334256},{"id":"https://openalex.org/C189783530","wikidata":"https://www.wikidata.org/wiki/Q352090","display_name":"CPU cache","level":3,"score":0.3709016},{"id":"https://openalex.org/C173608175","wikidata":"https://www.wikidata.org/wiki/Q232661","display_name":"Parallel computing","level":1,"score":0.22807676},{"id":"https://openalex.org/C111919701","wikidata":"https://www.wikidata.org/wiki/Q9135","display_name":"Operating system","level":1,"score":0.07272515}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/bdcloud.2018.00142","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":12,"referenced_works":["https://openalex.org/W2075268401","https://openalex.org/W2107885148","https://openalex.org/W2109562980","https://openalex.org/W2132219981","https://openalex.org/W2160276773","https://openalex.org/W2402144811","https://openalex.org/W2495742203","https://openalex.org/W2799171747","https://openalex.org/W2949578333","https://openalex.org/W2953384591","https://openalex.org/W3142886131","https://openalex.org/W6908809"],"related_works":["https://openalex.org/W4246122698","https://openalex.org/W3145643808","https://openalex.org/W2988244725","https://openalex.org/W2966447112","https://openalex.org/W2538815922","https://openalex.org/W2363409354","https://openalex.org/W2262128607","https://openalex.org/W2217292995","https://openalex.org/W2115782696","https://openalex.org/W109043737"],"abstract_inverted_index":{"Neural":[0],"networks":[1,83],"have":[2],"been":[3],"widely":[4],"applied":[5],"to":[6,33,71,94,101,149,157],"various":[7],"research":[8,15,47,53],"and":[9,21,42,60,73,78,98,128,144,165,174],"production":[10],"fields.":[11],"However,":[12],"most":[13],"recent":[14],"is":[16,31,92],"focused":[17],"on":[18,49,139],"the":[19,57,132,140,150,154],"establishment":[20],"selection":[22],"of":[23,38,63,81,104,111,134,136,187],"a":[24,50,68,184],"specific":[25],"neural":[26,64,69,82,106,120,123,126],"network":[27,70],"model.":[28],"Less":[29],"attention":[30],"paid":[32],"their":[34,39,85],"system":[35],"overhead":[36],"despite":[37],"massive":[40],"computing":[41],"storage":[43],"resource":[44],"demand.":[45,146],"This":[46],"focuses":[48],"relatively":[51],"new":[52],"direction":[54],"that":[55,172],"models":[56],"system-level":[58],"memory":[59,79,99,145,166,175],"cache":[61,96,143,161,173],"demand":[62],"networks.":[65,107],"We":[66,130,147],"utilize":[67],"learn":[72],"predict":[74,158],"hit":[75,162],"ratio":[76,163],"curve":[77,164],"footprint":[80],"with":[84],"hyper-parameters":[86,135],"as":[87,153],"input.":[88],"The":[89],"prediction":[90,181],"result":[91],"used":[93],"drive":[95],"partitioning":[97,100],"optimize":[102,182],"co-execution":[103],"multiple":[105],"To":[108],"demonstrate":[109],"effectiveness":[110],"our":[112,180],"approach,":[113],"we":[114],"model":[115,138],"four":[116],"common":[117],"networks,":[118],"BP":[119,151],"network,":[121,124,127],"convolutional":[122],"recurrent":[125],"autoencoder.":[129],"investigate":[131],"influence":[133],"each":[137],"last":[141,159],"level":[142,160],"resort":[148],"algorithm":[152],"learning":[155],"tool":[156],"usage.":[167],"Our":[168],"experimental":[169],"results":[170],"show":[171],"allocation":[176],"schemes":[177],"guided":[178],"by":[179],"for":[183],"wide":[185],"range":[186],"performance":[188],"targets.":[189]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2924298175","counts_by_year":[],"updated_date":"2025-01-27T09:57:39.309246","created_date":"2019-04-01"}