{"id":"https://openalex.org/W2963242746","doi":"https://doi.org/10.1109/avss.2017.8078500","title":"Towards lightweight convolutional neural networks for object detection","display_name":"Towards lightweight convolutional neural networks for object detection","publication_year":2017,"publication_date":"2017-08-01","ids":{"openalex":"https://openalex.org/W2963242746","doi":"https://doi.org/10.1109/avss.2017.8078500","mag":"2963242746"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/avss.2017.8078500","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/pdf/1707.01395","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5059527795","display_name":"Dmitriy Anisimov","orcid":null},"institutions":[],"countries":["RU"],"is_corresponding":false,"raw_author_name":"Dmitriy Anisimov","raw_affiliation_strings":["Intel Nizhny, Novgorod, Russia"],"affiliations":[{"raw_affiliation_string":"Intel Nizhny, Novgorod, Russia","institution_ids":[]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5005238206","display_name":"Tatiana Khanova","orcid":null},"institutions":[],"countries":["RU"],"is_corresponding":false,"raw_author_name":"Tatiana Khanova","raw_affiliation_strings":["Intel Nizhny, Novgorod, Russia"],"affiliations":[{"raw_affiliation_string":"Intel Nizhny, Novgorod, Russia","institution_ids":[]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":1.082,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":41,"citation_normalized_percentile":{"value":0.923021,"is_in_top_1_percent":false,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":95,"max":96},"biblio":{"volume":null,"issue":null,"first_page":"1","last_page":"8"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10036","display_name":"Advanced Neural Network Applications","score":1.0,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10036","display_name":"Advanced Neural Network Applications","score":1.0,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10331","display_name":"Video Surveillance and Tracking Methods","score":0.9998,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10627","display_name":"Advanced Image and Video Retrieval Techniques","score":0.9995,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/flops","display_name":"FLOPS","score":0.8265815},{"id":"https://openalex.org/keywords/feature","display_name":"Feature (linguistics)","score":0.52320075}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.8414928},{"id":"https://openalex.org/C3826847","wikidata":"https://www.wikidata.org/wiki/Q188768","display_name":"FLOPS","level":2,"score":0.8265815},{"id":"https://openalex.org/C81363708","wikidata":"https://www.wikidata.org/wiki/Q17084460","display_name":"Convolutional neural network","level":2,"score":0.7415097},{"id":"https://openalex.org/C2776151529","wikidata":"https://www.wikidata.org/wiki/Q3045304","display_name":"Object detection","level":3,"score":0.6636236},{"id":"https://openalex.org/C2776214188","wikidata":"https://www.wikidata.org/wiki/Q408386","display_name":"Inference","level":2,"score":0.6604592},{"id":"https://openalex.org/C52622490","wikidata":"https://www.wikidata.org/wiki/Q1026626","display_name":"Feature extraction","level":2,"score":0.60556966},{"id":"https://openalex.org/C177264268","wikidata":"https://www.wikidata.org/wiki/Q1514741","display_name":"Set (abstract data type)","level":2,"score":0.5464363},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.53778106},{"id":"https://openalex.org/C2780451532","wikidata":"https://www.wikidata.org/wiki/Q759676","display_name":"Task (project management)","level":2,"score":0.53413486},{"id":"https://openalex.org/C2776401178","wikidata":"https://www.wikidata.org/wiki/Q12050496","display_name":"Feature (linguistics)","level":2,"score":0.52320075},{"id":"https://openalex.org/C2781238097","wikidata":"https://www.wikidata.org/wiki/Q175026","display_name":"Object (grammar)","level":2,"score":0.44742942},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.43907526},{"id":"https://openalex.org/C111335779","wikidata":"https://www.wikidata.org/wiki/Q3454686","display_name":"Reduction (mathematics)","level":2,"score":0.42566842},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.35806322},{"id":"https://openalex.org/C79403827","wikidata":"https://www.wikidata.org/wiki/Q3988","display_name":"Real-time computing","level":1,"score":0.3227809},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.32140052},{"id":"https://openalex.org/C173608175","wikidata":"https://www.wikidata.org/wiki/Q232661","display_name":"Parallel computing","level":1,"score":0.15312064},{"id":"https://openalex.org/C41895202","wikidata":"https://www.wikidata.org/wiki/Q8162","display_name":"Linguistics","level":1,"score":0.0},{"id":"https://openalex.org/C138885662","wikidata":"https://www.wikidata.org/wiki/Q5891","display_name":"Philosophy","level":0,"score":0.0},{"id":"https://openalex.org/C2524010","wikidata":"https://www.wikidata.org/wiki/Q8087","display_name":"Geometry","level":1,"score":0.0},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.0},{"id":"https://openalex.org/C187736073","wikidata":"https://www.wikidata.org/wiki/Q2920921","display_name":"Management","level":1,"score":0.0},{"id":"https://openalex.org/C162324750","wikidata":"https://www.wikidata.org/wiki/Q8134","display_name":"Economics","level":0,"score":0.0},{"id":"https://openalex.org/C199360897","wikidata":"https://www.wikidata.org/wiki/Q9143","display_name":"Programming language","level":1,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/avss.2017.8078500","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/1707.01395","pdf_url":"https://arxiv.org/pdf/1707.01395","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/1707.01395","pdf_url":"https://arxiv.org/pdf/1707.01395","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":41,"referenced_works":["https://openalex.org/W1520997877","https://openalex.org/W1686810756","https://openalex.org/W1845051632","https://openalex.org/W2037227137","https://openalex.org/W2068730032","https://openalex.org/W2097117768","https://openalex.org/W2117539524","https://openalex.org/W2155893237","https://openalex.org/W2175073583","https://openalex.org/W2194775991","https://openalex.org/W2279098554","https://openalex.org/W2300805302","https://openalex.org/W2337344472","https://openalex.org/W2412782625","https://openalex.org/W2515655118","https://openalex.org/W2557728737","https://openalex.org/W2559924584","https://openalex.org/W2560696501","https://openalex.org/W2565639579","https://openalex.org/W2593245696","https://openalex.org/W2605135468","https://openalex.org/W2612445135","https://openalex.org/W2949150497","https://openalex.org/W2949533892","https://openalex.org/W2949650786","https://openalex.org/W2950179405","https://openalex.org/W2952020226","https://openalex.org/W2952588839","https://openalex.org/W2952865063","https://openalex.org/W2953106684","https://openalex.org/W2953390309","https://openalex.org/W2962685937","https://openalex.org/W2962835968","https://openalex.org/W2962850830","https://openalex.org/W2962965870","https://openalex.org/W2963087201","https://openalex.org/W2963674932","https://openalex.org/W2964228333","https://openalex.org/W3106250896","https://openalex.org/W4297775537","https://openalex.org/W639708223"],"related_works":["https://openalex.org/W4382323155","https://openalex.org/W4315697128","https://openalex.org/W4287067436","https://openalex.org/W4280599700","https://openalex.org/W3205506801","https://openalex.org/W3183570023","https://openalex.org/W3102845713","https://openalex.org/W3005814217","https://openalex.org/W2971502891","https://openalex.org/W2969228573"],"abstract_inverted_index":{"We":[0],"propose":[1],"model":[2,29,73],"with":[3,44,99],"larger":[4],"spatial":[5],"size":[6],"of":[7,42,80,86],"feature":[8,24],"maps":[9],"and":[10,60],"evaluate":[11],"it":[12],"on":[13,77,97],"object":[14],"detection":[15,55],"task.":[16],"With":[17,67],"the":[18,22,90],"goal":[19],"to":[20,50,92,103],"choose":[21],"best":[23,72],"extraction":[25],"network":[26],"for":[27,63],"our":[28,71,87],"we":[30,38],"compare":[31],"several":[32],"popular":[33],"lightweight":[34],"networks.":[35],"After":[36],"that":[37],"conduct":[39],"a":[40],"set":[41],"experiments":[43],"channels":[45],"reduction":[46],"algorithms":[47],"in":[48],"order":[49],"accelerate":[51],"execution.":[52],"Our":[53],"vehicle":[54],"models":[56,88],"are":[57],"accurate,":[58],"fast":[59],"therefore":[61],"suit":[62],"embedded":[64],"visual":[65],"applications.":[66],"only":[68],"1.5":[69],"GFLOPs":[70],"gives":[74],"95.13":[75],"AP":[76],"validation":[78],"subset":[79],"challenging":[81],"DETRAC":[82],"dataset.":[83],"The":[84],"smallest":[85],"is":[89],"first":[91],"achieve":[93],"real-time":[94],"inference":[95],"speed":[96],"CPU":[98],"reasonable":[100],"accuracy":[101],"drop":[102],"91.72":[104],"AP.":[105]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2963242746","counts_by_year":[{"year":2024,"cited_by_count":5},{"year":2023,"cited_by_count":7},{"year":2022,"cited_by_count":4},{"year":2021,"cited_by_count":7},{"year":2020,"cited_by_count":4},{"year":2019,"cited_by_count":9},{"year":2018,"cited_by_count":4},{"year":2017,"cited_by_count":1}],"updated_date":"2025-04-16T18:25:09.917311","created_date":"2019-07-30"}