{"id":"https://openalex.org/W2554521969","doi":"https://doi.org/10.1109/avss.2016.7738061","title":"Assessment of deep learning for gender classification on traditional datasets","display_name":"Assessment of deep learning for gender classification on traditional datasets","publication_year":2016,"publication_date":"2016-08-01","ids":{"openalex":"https://openalex.org/W2554521969","doi":"https://doi.org/10.1109/avss.2016.7738061","mag":"2554521969"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/avss.2016.7738061","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5045224831","display_name":"Marco Del Coco","orcid":"https://orcid.org/0000-0003-0321-5798"},"institutions":[],"countries":["IT"],"is_corresponding":false,"raw_author_name":"Marco Del Coco","raw_affiliation_strings":["CNR-ISASI, Campus universitario Ecotekne, Lecce, Italy"],"affiliations":[{"raw_affiliation_string":"CNR-ISASI, Campus universitario Ecotekne, Lecce, Italy","institution_ids":[]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5083749288","display_name":"Pierluigi Carcagn\u00ec","orcid":"https://orcid.org/0000-0003-3447-2922"},"institutions":[],"countries":["IT"],"is_corresponding":false,"raw_author_name":"Pierluigi Carcagni","raw_affiliation_strings":["CNR-ISASI, Campus universitario Ecotekne, Lecce, Italy"],"affiliations":[{"raw_affiliation_string":"CNR-ISASI, Campus universitario Ecotekne, Lecce, Italy","institution_ids":[]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5075788811","display_name":"Marco Leo","orcid":"https://orcid.org/0000-0001-5636-6130"},"institutions":[],"countries":["IT"],"is_corresponding":false,"raw_author_name":"Marco Leo","raw_affiliation_strings":["CNR-ISASI, Campus universitario Ecotekne, Lecce, Italy"],"affiliations":[{"raw_affiliation_string":"CNR-ISASI, Campus universitario Ecotekne, Lecce, Italy","institution_ids":[]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5083631981","display_name":"Pier Luigi Mazzeo","orcid":"https://orcid.org/0000-0002-7552-2394"},"institutions":[],"countries":["IT"],"is_corresponding":false,"raw_author_name":"Pier Luigi Mazzeo","raw_affiliation_strings":["CNR-ISASI, Campus universitario Ecotekne, Lecce, Italy"],"affiliations":[{"raw_affiliation_string":"CNR-ISASI, Campus universitario Ecotekne, Lecce, Italy","institution_ids":[]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5039146377","display_name":"Paolo Spagnolo","orcid":"https://orcid.org/0000-0001-9129-9375"},"institutions":[],"countries":["IT"],"is_corresponding":false,"raw_author_name":"Paolo Spagnolo","raw_affiliation_strings":["CNR-ISASI, Campus universitario Ecotekne, Lecce, Italy"],"affiliations":[{"raw_affiliation_string":"CNR-ISASI, Campus universitario Ecotekne, Lecce, Italy","institution_ids":[]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5002571252","display_name":"Cosimo Distante","orcid":"https://orcid.org/0000-0002-1073-2390"},"institutions":[],"countries":["IT"],"is_corresponding":false,"raw_author_name":"Cosimo Distante","raw_affiliation_strings":["CNR-ISASI, Campus universitario Ecotekne, Lecce, Italy"],"affiliations":[{"raw_affiliation_string":"CNR-ISASI, Campus universitario Ecotekne, Lecce, Italy","institution_ids":[]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.165,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":6,"citation_normalized_percentile":{"value":0.585783,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":82,"max":83},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11448","display_name":"Face recognition and analysis","score":0.9983,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11448","display_name":"Face recognition and analysis","score":0.9983,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10057","display_name":"Face and Expression Recognition","score":0.9931,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10331","display_name":"Video Surveillance and Tracking Methods","score":0.9789,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/cardinality","display_name":"Cardinality (data modeling)","score":0.57203186},{"id":"https://openalex.org/keywords/training-set","display_name":"Training set","score":0.41309953}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.7680278},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.6849594},{"id":"https://openalex.org/C108583219","wikidata":"https://www.wikidata.org/wiki/Q197536","display_name":"Deep learning","level":2,"score":0.64325774},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.62713003},{"id":"https://openalex.org/C87117476","wikidata":"https://www.wikidata.org/wiki/Q362383","display_name":"Cardinality (data modeling)","level":2,"score":0.57203186},{"id":"https://openalex.org/C184297639","wikidata":"https://www.wikidata.org/wiki/Q177765","display_name":"Biometrics","level":2,"score":0.5369982},{"id":"https://openalex.org/C98045186","wikidata":"https://www.wikidata.org/wiki/Q205663","display_name":"Process (computing)","level":2,"score":0.5364116},{"id":"https://openalex.org/C177264268","wikidata":"https://www.wikidata.org/wiki/Q1514741","display_name":"Set (abstract data type)","level":2,"score":0.4749993},{"id":"https://openalex.org/C51632099","wikidata":"https://www.wikidata.org/wiki/Q3985153","display_name":"Training set","level":2,"score":0.41309953},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.28393495},{"id":"https://openalex.org/C199360897","wikidata":"https://www.wikidata.org/wiki/Q9143","display_name":"Programming language","level":1,"score":0.0},{"id":"https://openalex.org/C111919701","wikidata":"https://www.wikidata.org/wiki/Q9135","display_name":"Operating system","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/avss.2016.7738061","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"score":0.55,"display_name":"Gender equality","id":"https://metadata.un.org/sdg/5"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":28,"referenced_works":["https://openalex.org/W127794501","https://openalex.org/W1545425562","https://openalex.org/W1593989786","https://openalex.org/W1598760490","https://openalex.org/W1759745650","https://openalex.org/W1828472411","https://openalex.org/W1905153633","https://openalex.org/W1971957654","https://openalex.org/W1978675111","https://openalex.org/W2019860225","https://openalex.org/W2038746948","https://openalex.org/W2081500828","https://openalex.org/W2085140289","https://openalex.org/W2099892904","https://openalex.org/W2101056529","https://openalex.org/W2118508489","https://openalex.org/W2120247083","https://openalex.org/W2122712427","https://openalex.org/W2137802466","https://openalex.org/W2149494055","https://openalex.org/W2155893237","https://openalex.org/W2163605009","https://openalex.org/W2169069957","https://openalex.org/W2174328132","https://openalex.org/W2185531897","https://openalex.org/W2255128850","https://openalex.org/W3097096317","https://openalex.org/W33524118"],"related_works":["https://openalex.org/W4380075502","https://openalex.org/W4319452359","https://openalex.org/W4300873085","https://openalex.org/W4241440711","https://openalex.org/W3147744369","https://openalex.org/W3000197790","https://openalex.org/W2379932303","https://openalex.org/W2183964146","https://openalex.org/W2076845124","https://openalex.org/W2002177687"],"abstract_inverted_index":{"Deep":[0],"Learning":[1],"has":[2,22,44,83],"becoming":[3],"a":[4,11,97,127,139],"popular":[5],"and":[6,90,114,136],"effective":[7],"way":[8],"to":[9,25,96,105,120],"address":[10],"large":[12,89],"set":[13],"of":[14,52,55,80,142],"issues.":[15],"In":[16],"particular,":[17],"in":[18,30,41],"computer":[19],"vision,":[20],"it":[21],"been":[23,84],"exploited":[24],"get":[26],"satisfying":[27],"recognition":[28,131,150],"performance":[29,40],"unconstrained":[31],"conditions.":[32],"However,":[33],"this":[34,56,123],"wild":[35],"race":[36],"towards":[37],"even":[38],"better":[39],"extreme":[42],"conditions":[43],"overshadowed":[45],"an":[46],"important":[47],"step":[48],"i.e.":[49],"the":[50,53,66,78,107,133,149],"assessment":[51],"impact":[54],"new":[57],"methodology":[58],"on":[59,62,87,132],"traditional":[60],"issues":[61],"which":[63],"for":[64,74,129,145],"years":[65],"researchers":[67],"had":[68],"worked.":[69],"This":[70,94,117],"is":[71],"particularly":[72],"true":[73],"biometrics":[75],"applications":[76],"where":[77],"evaluation":[79,101],"deep":[81],"learning":[82,112,146],"made":[85],"directly":[86],"newest":[88],"more":[91],"challencing":[92],"datasets.":[93],"lead":[95],"pure":[98],"data":[99],"driven":[100],"that":[102],"makes":[103],"difficult":[104],"analyze":[106],"relationships":[108],"between":[109],"network":[110],"configurations,":[111],"process":[113],"experienced":[115],"outcomes.":[116],"paper":[118],"tries":[119],"partially":[121],"fill":[122],"gap":[124],"by":[125],"applying":[126],"DNN":[128],"gender":[130],"MORPH":[134],"dataset":[135],"evaluating":[137],"how":[138],"lower":[140],"cardinality":[141],"examples":[143],"used":[144],"can":[147],"bias":[148],"performance.":[151]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2554521969","counts_by_year":[{"year":2023,"cited_by_count":2},{"year":2020,"cited_by_count":2},{"year":2018,"cited_by_count":1},{"year":2017,"cited_by_count":1}],"updated_date":"2025-03-20T23:24:14.641395","created_date":"2016-11-30"}