{"id":"https://openalex.org/W2787223168","doi":"https://doi.org/10.1109/asru.2017.8269013","title":"Deep learning methods for unsupervised acoustic modeling \u2014 Leap submission to ZeroSpeech challenge 2017","display_name":"Deep learning methods for unsupervised acoustic modeling \u2014 Leap submission to ZeroSpeech challenge 2017","publication_year":2017,"publication_date":"2017-12-01","ids":{"openalex":"https://openalex.org/W2787223168","doi":"https://doi.org/10.1109/asru.2017.8269013","mag":"2787223168"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/asru.2017.8269013","pdf_url":null,"source":{"id":"https://openalex.org/S4363606113","display_name":"2021 IEEE Automatic Speech Recognition and Understanding Workshop (ASRU)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5110544676","display_name":"Tabish Ansari","orcid":"https://orcid.org/0009-0003-8412-1247"},"institutions":[{"id":"https://openalex.org/I59270414","display_name":"Indian Institute of Science Bangalore","ror":"https://ror.org/04dese585","country_code":"IN","type":"education","lineage":["https://openalex.org/I59270414"]}],"countries":["IN"],"is_corresponding":false,"raw_author_name":"T K Ansari","raw_affiliation_strings":["Learning and Extraction of Acoustic Patterns (LEAP) Lab, Dept. of Electrical Engg., Indian Institute of Science, Bengaluru-560012, India"],"affiliations":[{"raw_affiliation_string":"Learning and Extraction of Acoustic Patterns (LEAP) Lab, Dept. of Electrical Engg., Indian Institute of Science, Bengaluru-560012, India","institution_ids":["https://openalex.org/I59270414"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5082530526","display_name":"Rajath Kumar","orcid":null},"institutions":[{"id":"https://openalex.org/I59270414","display_name":"Indian Institute of Science Bangalore","ror":"https://ror.org/04dese585","country_code":"IN","type":"education","lineage":["https://openalex.org/I59270414"]}],"countries":["IN"],"is_corresponding":false,"raw_author_name":"Rajath Kumar","raw_affiliation_strings":["Learning and Extraction of Acoustic Patterns (LEAP) Lab, Dept. of Electrical Engg., Indian Institute of Science, Bengaluru-560012, India"],"affiliations":[{"raw_affiliation_string":"Learning and Extraction of Acoustic Patterns (LEAP) Lab, Dept. of Electrical Engg., Indian Institute of Science, Bengaluru-560012, India","institution_ids":["https://openalex.org/I59270414"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5058385222","display_name":"Sonali Singh","orcid":"https://orcid.org/0000-0002-5498-5744"},"institutions":[{"id":"https://openalex.org/I59270414","display_name":"Indian Institute of Science Bangalore","ror":"https://ror.org/04dese585","country_code":"IN","type":"education","lineage":["https://openalex.org/I59270414"]}],"countries":["IN"],"is_corresponding":false,"raw_author_name":"Sonali Singh","raw_affiliation_strings":["Learning and Extraction of Acoustic Patterns (LEAP) Lab, Dept. of Electrical Engg., Indian Institute of Science, Bengaluru-560012, India"],"affiliations":[{"raw_affiliation_string":"Learning and Extraction of Acoustic Patterns (LEAP) Lab, Dept. of Electrical Engg., Indian Institute of Science, Bengaluru-560012, India","institution_ids":["https://openalex.org/I59270414"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5002536077","display_name":"Sriram Ganapathy","orcid":"https://orcid.org/0000-0002-5779-9066"},"institutions":[{"id":"https://openalex.org/I59270414","display_name":"Indian Institute of Science Bangalore","ror":"https://ror.org/04dese585","country_code":"IN","type":"education","lineage":["https://openalex.org/I59270414"]}],"countries":["IN"],"is_corresponding":false,"raw_author_name":"Sriram Ganapathy","raw_affiliation_strings":["Learning and Extraction of Acoustic Patterns (LEAP) Lab, Dept. of Electrical Engg., Indian Institute of Science, Bengaluru-560012, India"],"affiliations":[{"raw_affiliation_string":"Learning and Extraction of Acoustic Patterns (LEAP) Lab, Dept. of Electrical Engg., Indian Institute of Science, Bengaluru-560012, India","institution_ids":["https://openalex.org/I59270414"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":1.511,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":14,"citation_normalized_percentile":{"value":0.777941,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":88,"max":89},"biblio":{"volume":"10","issue":null,"first_page":"754","last_page":"761"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10201","display_name":"Speech Recognition and Synthesis","score":1.0,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10201","display_name":"Speech Recognition and Synthesis","score":1.0,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11309","display_name":"Music and Audio Processing","score":0.9975,"subfield":{"id":"https://openalex.org/subfields/1711","display_name":"Signal Processing"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10860","display_name":"Speech and Audio Processing","score":0.9973,"subfield":{"id":"https://openalex.org/subfields/1711","display_name":"Signal Processing"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/autoencoder","display_name":"Autoencoder","score":0.59574634},{"id":"https://openalex.org/keywords/mel-frequency-cepstrum","display_name":"Mel-frequency cepstrum","score":0.4909156}],"concepts":[{"id":"https://openalex.org/C23224414","wikidata":"https://www.wikidata.org/wiki/Q176769","display_name":"Hidden Markov model","level":2,"score":0.8221338},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.81798637},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.6697324},{"id":"https://openalex.org/C28490314","wikidata":"https://www.wikidata.org/wiki/Q189436","display_name":"Speech recognition","level":1,"score":0.61909825},{"id":"https://openalex.org/C101738243","wikidata":"https://www.wikidata.org/wiki/Q786435","display_name":"Autoencoder","level":3,"score":0.59574634},{"id":"https://openalex.org/C184898388","wikidata":"https://www.wikidata.org/wiki/Q1435712","display_name":"Pairwise comparison","level":2,"score":0.55496585},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.50629437},{"id":"https://openalex.org/C61224824","wikidata":"https://www.wikidata.org/wiki/Q2260434","display_name":"Mixture model","level":2,"score":0.5010538},{"id":"https://openalex.org/C108583219","wikidata":"https://www.wikidata.org/wiki/Q197536","display_name":"Deep learning","level":2,"score":0.49555647},{"id":"https://openalex.org/C151989614","wikidata":"https://www.wikidata.org/wiki/Q440370","display_name":"Mel-frequency cepstrum","level":3,"score":0.4909156},{"id":"https://openalex.org/C137293760","wikidata":"https://www.wikidata.org/wiki/Q3621696","display_name":"Language model","level":2,"score":0.48712015},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.44158742},{"id":"https://openalex.org/C8038995","wikidata":"https://www.wikidata.org/wiki/Q1152135","display_name":"Unsupervised learning","level":2,"score":0.43276113},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.36398906},{"id":"https://openalex.org/C52622490","wikidata":"https://www.wikidata.org/wiki/Q1026626","display_name":"Feature extraction","level":2,"score":0.2555341}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/asru.2017.8269013","pdf_url":null,"source":{"id":"https://openalex.org/S4363606113","display_name":"2021 IEEE Automatic Speech Recognition and Understanding Workshop (ASRU)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"score":0.59,"display_name":"Quality education","id":"https://metadata.un.org/sdg/4"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":22,"referenced_works":["https://openalex.org/W1524333225","https://openalex.org/W1553004968","https://openalex.org/W1560013842","https://openalex.org/W1796128977","https://openalex.org/W2009388533","https://openalex.org/W2041823554","https://openalex.org/W2072128103","https://openalex.org/W2115008841","https://openalex.org/W2117041980","https://openalex.org/W2120480077","https://openalex.org/W2126203737","https://openalex.org/W2152175008","https://openalex.org/W2181347294","https://openalex.org/W222076935","https://openalex.org/W2404799143","https://openalex.org/W2406349064","https://openalex.org/W2513125788","https://openalex.org/W2785860501","https://openalex.org/W2786608204","https://openalex.org/W2963620343","https://openalex.org/W30845872","https://openalex.org/W4231109964"],"related_works":["https://openalex.org/W4312416532","https://openalex.org/W3131327266","https://openalex.org/W3013693939","https://openalex.org/W2965146396","https://openalex.org/W2806873178","https://openalex.org/W2770818364","https://openalex.org/W2566616303","https://openalex.org/W2370972896","https://openalex.org/W2159052453","https://openalex.org/W2048014685"],"abstract_inverted_index":{"In":[0,56,82,108,158],"this":[1,16],"paper,":[2],"we":[3,86,110,161],"present":[4],"our":[5],"system":[6,173,184],"submission":[7],"to":[8,20,97,123],"the":[9,28,57,68,83,99,125,129,147,152,164,171,183,187,192,195],"ZeroSpeech":[10,148],"2017":[11,149],"Challenge.":[12],"The":[13],"track1":[14],"of":[15,41,70,121,180,186],"challenge":[17],"is":[18,65],"intended":[19],"develop":[21,87,112],"language":[22,118],"independent":[23,119],"speech":[24,122],"representations":[25],"that":[26,163],"provide":[27],"least":[29],"pairwise":[30],"ABX":[31,155],"distance":[32],"computed":[33],"for":[34,53],"within":[35],"speaker":[36,39],"and":[37],"across":[38],"pairs":[40],"spoken":[42],"words.":[43],"We":[44,142],"investigate":[45],"two":[46,165,188],"approaches":[47,130,167,190],"based":[48,94],"on":[49,67],"deep":[50,61,114],"learning":[51],"methods":[52],"unsupervised":[54,100],"modeling.":[55],"first":[58],"approach,":[59,85],"a":[60,77,88,113],"neural":[62],"network":[63],"(DNN)":[64],"trained":[66],"posteriors":[69],"mixture":[71,79],"component":[72],"indices":[73],"obtained":[74],"from":[75],"training":[76,136],"Gaussian":[78],"model":[80,92,96],"(GMM)-UBM.":[81],"second":[84],"similar":[89],"hidden":[90],"Markov":[91],"(HMM)":[93],"DNN":[95],"learn":[98],"acoustic":[101],"units":[102],"provided":[103],"by":[104],"HMM":[105],"state":[106],"alignments.":[107],"addition,":[109],"also":[111],"autoencoder":[115],"which":[116],"learns":[117],"embeddings":[120],"train":[124],"HMM-DNN":[126],"model.":[127],"Both":[128],"do":[131],"not":[132],"use":[133],"any":[134,140],"labeled":[135],"data":[137],"or":[138],"require":[139],"supervision.":[141],"perform":[143],"several":[144],"experiments":[145],"using":[146,174],"corpus":[150],"with":[151],"minimal":[153],"pair":[154],"error":[156],"measure.":[157],"these":[159],"experiments,":[160],"find":[162],"proposed":[166,189],"significantly":[168],"improve":[169],"over":[170,194],"baseline":[172],"MFCC":[175],"features":[176],"(average":[177],"relative":[178],"improvements":[179],"30\u201340%).":[181],"Furthermore,":[182],"combination":[185],"improves":[191],"performance":[193],"best":[196],"individual":[197],"system.":[198]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2787223168","counts_by_year":[{"year":2022,"cited_by_count":3},{"year":2021,"cited_by_count":2},{"year":2020,"cited_by_count":3},{"year":2019,"cited_by_count":3},{"year":2017,"cited_by_count":2},{"year":2015,"cited_by_count":1}],"updated_date":"2025-01-16T08:05:47.671360","created_date":"2018-02-23"}