{"id":"https://openalex.org/W2081053527","doi":"https://doi.org/10.1109/ascc.2013.6606227","title":"Robust unscented Kalman filter via l<inf>1</inf> regression and design method of its parameters","display_name":"Robust unscented Kalman filter via l<inf>1</inf> regression and design method of its parameters","publication_year":2013,"publication_date":"2013-06-01","ids":{"openalex":"https://openalex.org/W2081053527","doi":"https://doi.org/10.1109/ascc.2013.6606227","mag":"2081053527"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/ascc.2013.6606227","pdf_url":null,"source":{"id":"https://openalex.org/S4363607827","display_name":"2022 13th Asian Control Conference (ASCC)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5100811876","display_name":"Yasuaki Kaneda","orcid":null},"institutions":[{"id":"https://openalex.org/I114531698","display_name":"Tokyo Institute of Technology","ror":"https://ror.org/0112mx960","country_code":"JP","type":"funder","lineage":["https://openalex.org/I114531698"]}],"countries":["JP"],"is_corresponding":false,"raw_author_name":"Yasuaki Kaneda","raw_affiliation_strings":["Grad. Sch. of Sci. & Eng., Tokyo Inst. of Technol., Tokyo, Japan"],"affiliations":[{"raw_affiliation_string":"Grad. Sch. of Sci. & Eng., Tokyo Inst. of Technol., Tokyo, Japan","institution_ids":["https://openalex.org/I114531698"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5073182912","display_name":"Yasuharu Irizuki","orcid":null},"institutions":[{"id":"https://openalex.org/I4210160010","display_name":"Tokyo Metropolitan Industrial Technology Research Institute","ror":"https://ror.org/05sa4da38","country_code":"JP","type":"facility","lineage":["https://openalex.org/I4210160010"]}],"countries":["JP"],"is_corresponding":false,"raw_author_name":"Yasuharu Irizuki","raw_affiliation_strings":["Tokyo Metropolitan Ind. Technol. Res. Inst., Tokyo, Japan"],"affiliations":[{"raw_affiliation_string":"Tokyo Metropolitan Ind. Technol. Res. Inst., Tokyo, Japan","institution_ids":["https://openalex.org/I4210160010"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5024346161","display_name":"Masaki Yamakita","orcid":null},"institutions":[{"id":"https://openalex.org/I114531698","display_name":"Tokyo Institute of Technology","ror":"https://ror.org/0112mx960","country_code":"JP","type":"funder","lineage":["https://openalex.org/I114531698"]}],"countries":["JP"],"is_corresponding":false,"raw_author_name":"Masaki Yamakita","raw_affiliation_strings":["Grad. Sch. of Sci. & Eng., Tokyo Inst. of Technol., Tokyo, Japan"],"affiliations":[{"raw_affiliation_string":"Grad. Sch. of Sci. & Eng., Tokyo Inst. of Technol., Tokyo, Japan","institution_ids":["https://openalex.org/I114531698"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":2,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.642,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":6,"citation_normalized_percentile":{"value":0.549462,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":81,"max":83},"biblio":{"volume":null,"issue":null,"first_page":"1","last_page":"6"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10711","display_name":"Target Tracking and Data Fusion in Sensor Networks","score":0.9998,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10711","display_name":"Target Tracking and Data Fusion in Sensor Networks","score":0.9998,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10534","display_name":"Structural Health Monitoring Techniques","score":0.9978,"subfield":{"id":"https://openalex.org/subfields/2205","display_name":"Civil and Structural Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11236","display_name":"Control Systems and Identification","score":0.9946,"subfield":{"id":"https://openalex.org/subfields/2207","display_name":"Control and Systems Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/regularization","display_name":"Regularization","score":0.60772043}],"concepts":[{"id":"https://openalex.org/C157286648","wikidata":"https://www.wikidata.org/wiki/Q846780","display_name":"Kalman filter","level":2,"score":0.7361717},{"id":"https://openalex.org/C79337645","wikidata":"https://www.wikidata.org/wiki/Q779824","display_name":"Outlier","level":2,"score":0.68309236},{"id":"https://openalex.org/C2776135515","wikidata":"https://www.wikidata.org/wiki/Q17143721","display_name":"Regularization (linguistics)","level":2,"score":0.60772043},{"id":"https://openalex.org/C83546350","wikidata":"https://www.wikidata.org/wiki/Q1139051","display_name":"Regression","level":2,"score":0.590484},{"id":"https://openalex.org/C163716315","wikidata":"https://www.wikidata.org/wiki/Q901177","display_name":"Gaussian","level":2,"score":0.49544823},{"id":"https://openalex.org/C173801870","wikidata":"https://www.wikidata.org/wiki/Q201413","display_name":"Heuristic","level":2,"score":0.46981198},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.46533245},{"id":"https://openalex.org/C152877465","wikidata":"https://www.wikidata.org/wiki/Q208042","display_name":"Regression analysis","level":2,"score":0.46476564},{"id":"https://openalex.org/C48921125","wikidata":"https://www.wikidata.org/wiki/Q10861030","display_name":"Linear regression","level":2,"score":0.45158818},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.3812992},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.33811152},{"id":"https://openalex.org/C105795698","wikidata":"https://www.wikidata.org/wiki/Q12483","display_name":"Statistics","level":1,"score":0.30029333},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.262106},{"id":"https://openalex.org/C62520636","wikidata":"https://www.wikidata.org/wiki/Q944","display_name":"Quantum mechanics","level":1,"score":0.0},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/ascc.2013.6606227","pdf_url":null,"source":{"id":"https://openalex.org/S4363607827","display_name":"2022 13th Asian Control Conference (ASCC)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":18,"referenced_works":["https://openalex.org/W1979731521","https://openalex.org/W1997462664","https://openalex.org/W2000340713","https://openalex.org/W2018890348","https://openalex.org/W2020934227","https://openalex.org/W2069870053","https://openalex.org/W2084447079","https://openalex.org/W2095376999","https://openalex.org/W2101986122","https://openalex.org/W2121990344","https://openalex.org/W2126423185","https://openalex.org/W2131458171","https://openalex.org/W2135046866","https://openalex.org/W2135683610","https://openalex.org/W2140428383","https://openalex.org/W2141300598","https://openalex.org/W2145768101","https://openalex.org/W2156528769"],"related_works":["https://openalex.org/W4311044804","https://openalex.org/W4233024177","https://openalex.org/W3174613421","https://openalex.org/W31220157","https://openalex.org/W3006513224","https://openalex.org/W2385286892","https://openalex.org/W2350927655","https://openalex.org/W2288557197","https://openalex.org/W2101914902","https://openalex.org/W2046456988"],"abstract_inverted_index":{"In":[0],"this":[1],"paper,":[2],"we":[3,69],"propose":[4],"a":[5,18,81,85],"robust":[6],"unscented":[7],"Kalman":[8],"filter":[9],"(RUKF)":[10],"using":[11],"l":[12,31],"1":[15,34],"regression":[16,35],"and":[17,68,90],"new":[19],"design":[20,51,71],"method":[21],"of":[22,58,65,84],"its":[23],"regularization":[24,28],"parameters.":[25],"Generally,":[26],"the":[27,42,63,66,72,91],"parameters":[29,43,64,73],"in":[30,49],"are":[36],"designed":[37],"by":[38,95],"heuristic":[39],"methods,":[40],"so":[41],"have":[44],"no":[45],"physical":[46],"senses.":[47],"However,":[48],"our":[50],"method,":[52],"it":[53],"is":[54,78,93],"shown":[55],"that":[56],"statistics":[57],"Gaussian":[59],"measurement":[60],"noise":[61],"determine":[62],"RUKF,":[67],"can":[70],"systematically.":[74],"The":[75],"proposed":[76],"RUKF":[77],"applied":[79],"to":[80],"state":[82],"estimation":[83],"two-link":[86],"manipulator":[87],"with":[88],"outliers,":[89],"effectiveness":[92],"demonstrated":[94],"numerical":[96],"simulations.":[97]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2081053527","counts_by_year":[{"year":2019,"cited_by_count":1},{"year":2018,"cited_by_count":1},{"year":2015,"cited_by_count":2},{"year":2014,"cited_by_count":2}],"updated_date":"2025-04-20T18:25:48.022978","created_date":"2016-06-24"}