{"id":"https://openalex.org/W2572822733","doi":"https://doi.org/10.1109/apsipa.2016.7820788","title":"High accuracy reconstruction algorithm for CS-MRI using SDMM","display_name":"High accuracy reconstruction algorithm for CS-MRI using SDMM","publication_year":2016,"publication_date":"2016-12-01","ids":{"openalex":"https://openalex.org/W2572822733","doi":"https://doi.org/10.1109/apsipa.2016.7820788","mag":"2572822733"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/apsipa.2016.7820788","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5006063787","display_name":"M. Shibata","orcid":null},"institutions":[{"id":"https://openalex.org/I135768898","display_name":"Ritsumeikan University","ror":"https://ror.org/0197nmd03","country_code":"JP","type":"education","lineage":["https://openalex.org/I135768898","https://openalex.org/I4390039241"]}],"countries":["JP"],"is_corresponding":false,"raw_author_name":"Motoi Shibata","raw_affiliation_strings":["College of Information Science and Engineering, Ritsumeikan University, Kusatsu, Japan"],"affiliations":[{"raw_affiliation_string":"College of Information Science and Engineering, Ritsumeikan University, Kusatsu, Japan","institution_ids":["https://openalex.org/I135768898"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5072074013","display_name":"Norihito Inamuro","orcid":null},"institutions":[{"id":"https://openalex.org/I135768898","display_name":"Ritsumeikan University","ror":"https://ror.org/0197nmd03","country_code":"JP","type":"education","lineage":["https://openalex.org/I135768898","https://openalex.org/I4390039241"]}],"countries":["JP"],"is_corresponding":false,"raw_author_name":"Norihito Inamuro","raw_affiliation_strings":["College of Information Science and Engineering, Ritsumeikan University, Kusatsu, Japan"],"affiliations":[{"raw_affiliation_string":"College of Information Science and Engineering, Ritsumeikan University, Kusatsu, Japan","institution_ids":["https://openalex.org/I135768898"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5033075918","display_name":"Takashi Ijiri","orcid":"https://orcid.org/0000-0002-9057-2066"},"institutions":[{"id":"https://openalex.org/I135768898","display_name":"Ritsumeikan University","ror":"https://ror.org/0197nmd03","country_code":"JP","type":"education","lineage":["https://openalex.org/I135768898","https://openalex.org/I4390039241"]}],"countries":["JP"],"is_corresponding":false,"raw_author_name":"Takashi Ijiri","raw_affiliation_strings":["College of Information Science and Engineering, Ritsumeikan University, Kusatsu, Japan"],"affiliations":[{"raw_affiliation_string":"College of Information Science and Engineering, Ritsumeikan University, Kusatsu, Japan","institution_ids":["https://openalex.org/I135768898"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5112495604","display_name":"Akira Hirabayashi","orcid":null},"institutions":[{"id":"https://openalex.org/I135768898","display_name":"Ritsumeikan University","ror":"https://ror.org/0197nmd03","country_code":"JP","type":"education","lineage":["https://openalex.org/I135768898","https://openalex.org/I4390039241"]}],"countries":["JP"],"is_corresponding":false,"raw_author_name":"Akira Hirabayashi","raw_affiliation_strings":["College of Information Science and Engineering, Ritsumeikan University, Kusatsu, Japan"],"affiliations":[{"raw_affiliation_string":"College of Information Science and Engineering, Ritsumeikan University, Kusatsu, Japan","institution_ids":["https://openalex.org/I135768898"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.0,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":66},"biblio":{"volume":null,"issue":null,"first_page":"1","last_page":"6"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10378","display_name":"Advanced MRI Techniques and Applications","score":1.0,"subfield":{"id":"https://openalex.org/subfields/2741","display_name":"Radiology, Nuclear Medicine and Imaging"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}},"topics":[{"id":"https://openalex.org/T10378","display_name":"Advanced MRI Techniques and Applications","score":1.0,"subfield":{"id":"https://openalex.org/subfields/2741","display_name":"Radiology, Nuclear Medicine and Imaging"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}},{"id":"https://openalex.org/T10500","display_name":"Sparse and Compressive Sensing Techniques","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/2206","display_name":"Computational Mechanics"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12015","display_name":"Photoacoustic and Ultrasonic Imaging","score":0.9986,"subfield":{"id":"https://openalex.org/subfields/2204","display_name":"Biomedical Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[],"concepts":[{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.70424855},{"id":"https://openalex.org/C202615002","wikidata":"https://www.wikidata.org/wiki/Q783507","display_name":"Differentiable function","level":2,"score":0.55672956},{"id":"https://openalex.org/C145446738","wikidata":"https://www.wikidata.org/wiki/Q319913","display_name":"Convex function","level":3,"score":0.5263639},{"id":"https://openalex.org/C124851039","wikidata":"https://www.wikidata.org/wiki/Q2665459","display_name":"Compressed sensing","level":2,"score":0.51594883},{"id":"https://openalex.org/C157972887","wikidata":"https://www.wikidata.org/wiki/Q463359","display_name":"Convex optimization","level":3,"score":0.47678235},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.4371105},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.42745647},{"id":"https://openalex.org/C14036430","wikidata":"https://www.wikidata.org/wiki/Q3736076","display_name":"Function (biology)","level":2,"score":0.41666937},{"id":"https://openalex.org/C112680207","wikidata":"https://www.wikidata.org/wiki/Q714886","display_name":"Regular polygon","level":2,"score":0.31674623},{"id":"https://openalex.org/C134306372","wikidata":"https://www.wikidata.org/wiki/Q7754","display_name":"Mathematical analysis","level":1,"score":0.14079398},{"id":"https://openalex.org/C2524010","wikidata":"https://www.wikidata.org/wiki/Q8087","display_name":"Geometry","level":1,"score":0.0},{"id":"https://openalex.org/C78458016","wikidata":"https://www.wikidata.org/wiki/Q840400","display_name":"Evolutionary biology","level":1,"score":0.0},{"id":"https://openalex.org/C86803240","wikidata":"https://www.wikidata.org/wiki/Q420","display_name":"Biology","level":0,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/apsipa.2016.7820788","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":14,"referenced_works":["https://openalex.org/W1493250972","https://openalex.org/W1507545671","https://openalex.org/W1547941176","https://openalex.org/W1933386811","https://openalex.org/W2025076375","https://openalex.org/W2029816571","https://openalex.org/W2097474301","https://openalex.org/W2101675075","https://openalex.org/W2167233877","https://openalex.org/W2168887049","https://openalex.org/W2315022865","https://openalex.org/W4233764193","https://openalex.org/W4249760698","https://openalex.org/W836188775"],"related_works":["https://openalex.org/W4387635768","https://openalex.org/W4385382439","https://openalex.org/W4327738859","https://openalex.org/W4285277090","https://openalex.org/W3153752017","https://openalex.org/W2962818859","https://openalex.org/W2379589510","https://openalex.org/W2348722996","https://openalex.org/W2187449906","https://openalex.org/W2158224665"],"abstract_inverted_index":{"We":[0,157],"propose":[1,108],"a":[2,14,29,52,80],"high":[3],"accuracy":[4],"algorithm":[5,84,110,173],"for":[6],"compressed":[7],"sensing":[8,184],"magnetic":[9],"resonance":[10],"imaging":[11],"(CS-MRI)":[12],"using":[13,161,165],"convex":[15,130],"optimization":[16,131],"technique.":[17],"Lustig":[18],"et":[19],"al.":[20],"proposed":[21,172],"CS-MRI":[22,139],"technique":[23],"based":[24,116],"on":[25,117],"the":[26,34,37,41,76,89,113,118,129,144,151,154,171,175],"minimization":[27],"of":[28,36,47,62,75,102,122,128,136,153,179],"cost":[30,91],"function":[31,57],"defined":[32],"by":[33],"sum":[35],"data":[38],"fidelity":[39],"term,":[40],"\u2113":[42,64],"1":[45,67],"-norm":[46,68],"sparsifying":[48],"transform":[49],"coefficients,":[50],"and":[51,69,79,182],"total":[53],"variation":[54],"(TV).":[55],"This":[56],"is":[58,126,148],"not":[59],"differentiable":[60],"because":[61,143],"both":[63],"TV.":[70],"Hence,":[71],"they":[72],"used":[73],"approximations":[74],"non-differentiable":[77],"terms":[78],"nonlinear":[81],"conjugate":[82],"gradient":[83],"was":[85,96],"applied":[86],"to":[87,138,150],"minimize":[88],"approximated":[90,99],"function.":[92],"The":[93],"obtained":[94],"solution":[95,115],"also":[97],"an":[98,109],"one,":[100],"thus":[101],"low-quality.":[103],"In":[104],"this":[105,159],"paper,":[106],"we":[107],"that":[111,170],"obtains":[112],"exact":[114],"simultaneous":[119],"direction":[120],"method":[121],"multipliers":[123],"(SDMM),":[124],"which":[125],"one":[127,177],"techniques.":[132],"A":[133],"simple":[134],"application":[135],"SDMM":[137],"cannot":[140],"be":[141],"implemented":[142],"transformation":[145],"matrix":[146],"size":[147],"proportional":[149],"square":[152],"image":[155],"size.":[156],"solve":[158],"problem":[160],"eigenvalue":[162],"decompositions.":[163],"Simulations":[164],"real":[166],"MR":[167],"images":[168],"show":[169],"outperforms":[174],"conventional":[176],"regardless":[178],"compression":[180],"ratio":[181],"random":[183],"patterns.":[185]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2572822733","counts_by_year":[],"updated_date":"2024-12-12T05:25:26.760409","created_date":"2017-01-26"}