{"id":"https://openalex.org/W4285347673","doi":"https://doi.org/10.1109/aipr52630.2021.9762080","title":"The Golden Ratio in Machine Learning","display_name":"The Golden Ratio in Machine Learning","publication_year":2021,"publication_date":"2021-10-12","ids":{"openalex":"https://openalex.org/W4285347673","doi":"https://doi.org/10.1109/aipr52630.2021.9762080"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/aipr52630.2021.9762080","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5035100758","display_name":"Stefan Jaeger","orcid":"https://orcid.org/0000-0001-6877-4318"},"institutions":[{"id":"https://openalex.org/I2800548410","display_name":"United States National Library of Medicine","ror":"https://ror.org/0060t0j89","country_code":"US","type":"funder","lineage":["https://openalex.org/I1299022934","https://openalex.org/I1299303238","https://openalex.org/I2800548410"]},{"id":"https://openalex.org/I1299303238","display_name":"National Institutes of Health","ror":"https://ror.org/01cwqze88","country_code":"US","type":"government","lineage":["https://openalex.org/I1299022934","https://openalex.org/I1299303238"]}],"countries":["US"],"is_corresponding":true,"raw_author_name":"Stefan Jaeger","raw_affiliation_strings":["National Library of Medicine, National Institutes of Health,Bethesda,MD,USA,20894"],"affiliations":[{"raw_affiliation_string":"National Library of Medicine, National Institutes of Health,Bethesda,MD,USA,20894","institution_ids":["https://openalex.org/I2800548410","https://openalex.org/I1299303238"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":2,"corresponding_author_ids":["https://openalex.org/A5035100758"],"corresponding_institution_ids":["https://openalex.org/I2800548410","https://openalex.org/I1299303238"],"apc_list":null,"apc_paid":null,"fwci":0.501,"has_fulltext":false,"cited_by_count":5,"citation_normalized_percentile":{"value":0.597593,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":78,"max":80},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T12261","display_name":"Statistical Mechanics and Entropy","score":0.9872,"subfield":{"id":"https://openalex.org/subfields/3109","display_name":"Statistical and Nonlinear Physics"},"field":{"id":"https://openalex.org/fields/31","display_name":"Physics and Astronomy"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T12261","display_name":"Statistical Mechanics and Entropy","score":0.9872,"subfield":{"id":"https://openalex.org/subfields/3109","display_name":"Statistical and Nonlinear Physics"},"field":{"id":"https://openalex.org/fields/31","display_name":"Physics and Astronomy"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10320","display_name":"Neural Networks and Applications","score":0.9804,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12002","display_name":"Computability, Logic, AI Algorithms","score":0.9707,"subfield":{"id":"https://openalex.org/subfields/1703","display_name":"Computational Theory and Mathematics"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/backpropagation","display_name":"Backpropagation","score":0.8666743},{"id":"https://openalex.org/keywords/momentum","display_name":"Momentum (technical analysis)","score":0.45563713}],"concepts":[{"id":"https://openalex.org/C155032097","wikidata":"https://www.wikidata.org/wiki/Q798503","display_name":"Backpropagation","level":3,"score":0.8666743},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.6980212},{"id":"https://openalex.org/C153258448","wikidata":"https://www.wikidata.org/wiki/Q1199743","display_name":"Gradient descent","level":3,"score":0.6569151},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.635123},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.5382151},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.48704675},{"id":"https://openalex.org/C60718061","wikidata":"https://www.wikidata.org/wiki/Q1414747","display_name":"Momentum (technical analysis)","level":2,"score":0.45563713},{"id":"https://openalex.org/C106301342","wikidata":"https://www.wikidata.org/wiki/Q4117933","display_name":"Entropy (arrow of time)","level":2,"score":0.4500098},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.43877065},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.3408817},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.07210094},{"id":"https://openalex.org/C10138342","wikidata":"https://www.wikidata.org/wiki/Q43015","display_name":"Finance","level":1,"score":0.0},{"id":"https://openalex.org/C62520636","wikidata":"https://www.wikidata.org/wiki/Q944","display_name":"Quantum mechanics","level":1,"score":0.0},{"id":"https://openalex.org/C162324750","wikidata":"https://www.wikidata.org/wiki/Q8134","display_name":"Economics","level":0,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/aipr52630.2021.9762080","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"display_name":"Quality education","id":"https://metadata.un.org/sdg/4","score":0.6}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":21,"referenced_works":["https://openalex.org/W104184427","https://openalex.org/W1498436455","https://openalex.org/W1522301498","https://openalex.org/W1686810756","https://openalex.org/W1806891645","https://openalex.org/W1965555277","https://openalex.org/W1995875735","https://openalex.org/W1999483147","https://openalex.org/W2009618608","https://openalex.org/W2097998348","https://openalex.org/W2146502635","https://openalex.org/W2160208155","https://openalex.org/W2163605009","https://openalex.org/W2194775991","https://openalex.org/W2565654137","https://openalex.org/W2919115771","https://openalex.org/W2995653869","https://openalex.org/W3033103365","https://openalex.org/W3111310384","https://openalex.org/W4250767313","https://openalex.org/W4255949318"],"related_works":["https://openalex.org/W4387932263","https://openalex.org/W4225893763","https://openalex.org/W3093883775","https://openalex.org/W2894173309","https://openalex.org/W2788727425","https://openalex.org/W2786746258","https://openalex.org/W2371065793","https://openalex.org/W2157746493","https://openalex.org/W2115605526","https://openalex.org/W1539246760"],"abstract_inverted_index":{"Gradient":[0],"descent":[1],"has":[2,42],"been":[3,43],"a":[4,35,69,117,129,153,218],"central":[5],"training":[6,30,54,137],"prin-ciple":[7],"for":[8,29,125,189,217],"artificial":[9],"neural":[10,32],"networks":[11,33],"from":[12,110],"the":[13,26,44,65,72,77,80,165,173,190,198,203,227,234],"early":[14],"beginnings":[15],"to":[16,47,185],"today's":[17],"deep":[18],"learning":[19,56,62,131,191,236],"networks.":[20],"The":[21,61,176],"most":[22],"common":[23],"imple-mentation":[24],"is":[25],"backpropagation":[27,41,112,141],"algorithm":[28],"feed-forward":[31],"in":[34,94,160,202,231,242],"supervised":[36],"fashion.":[37],"A":[38],"drawback":[39],"of":[40,51,71],"search":[45],"required":[46],"find":[48],"optimal":[49],"values":[50,105,188,199],"two":[52,158],"important":[53,181],"parameters,":[55],"rate":[57,63,132,192,237],"and":[58,133,193,238],"momentum":[59,81,134,194,239],"weight.":[60,135],"specifies":[64],"step":[66],"size":[67],"towards":[68],"minimum":[70],"loss":[73,120,147,229],"function":[74,121],"when":[75,87],"following":[76],"gradient,":[78],"while":[79,168],"weight":[82,85],"considers":[83],"previous":[84],"changes":[86],"updating":[88],"current":[89],"weights.":[90],"Using":[91],"both":[92],"parameters":[93],"conjunction":[95,232],"with":[96,157,233],"each":[97],"other":[98],"generally":[99],"improves":[100],"training,":[101],"although":[102],"their":[103,146],"specific":[104,130],"do":[106],"not":[107],"follow":[108],"immediately":[109],"standard":[111],"theory.":[113],"This":[114],"paper":[115,151],"proposes":[116],"new":[118],"information-theoretical":[119,212],"based":[122,139],"on":[123,140],"cross-entropy":[124,143],"which":[126,161,205],"it":[127],"derives":[128],"Many":[136],"procedures":[138],"use":[142],"directly":[144],"as":[145],"function.":[148],"Instead,":[149],"this":[150,211],"investigates":[152],"dual":[154,170],"process":[155,163],"model":[156],"processes,":[159],"one":[162],"minimizes":[164,172],"Kullback-Leibler":[166],"divergence":[167],"its":[169],"counterpart":[171],"Shannon":[174],"entropy.":[175],"golden":[177],"ratio":[178],"plays":[179],"an":[180],"role":[182],"here,":[183],"allowing":[184],"derive":[186],"theoretical":[187],"weight,":[195,240],"matching":[196],"closely":[197],"traditionally":[200],"used":[201],"literature,":[204],"are":[206,223],"determined":[207],"empirically.":[208],"To":[209],"validate":[210],"approach":[213],"further,":[214],"classification":[215],"results":[216],"handwritten":[219],"digit":[220],"recognition":[221],"task":[222],"presented,":[224],"showing":[225],"that":[226],"proposed":[228],"function,":[230],"derived":[235],"works":[241],"practice.":[243]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4285347673","counts_by_year":[{"year":2024,"cited_by_count":2},{"year":2023,"cited_by_count":1},{"year":2022,"cited_by_count":2}],"updated_date":"2025-04-24T10:59:14.862440","created_date":"2022-07-14"}