{"id":"https://openalex.org/W2968209746","doi":"https://doi.org/10.1109/aike.2019.00045","title":"Predicting Stock Prices using Ensemble Learning and Sentiment Analysis","display_name":"Predicting Stock Prices using Ensemble Learning and Sentiment Analysis","publication_year":2019,"publication_date":"2019-06-01","ids":{"openalex":"https://openalex.org/W2968209746","doi":"https://doi.org/10.1109/aike.2019.00045","mag":"2968209746"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/aike.2019.00045","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5080102308","display_name":"Ujjwal Pasupulety","orcid":"https://orcid.org/0000-0001-8760-2829"},"institutions":[{"id":"https://openalex.org/I11880225","display_name":"National Institute of Technology Karnataka","ror":"https://ror.org/01hz4v948","country_code":"IN","type":"funder","lineage":["https://openalex.org/I11880225"]}],"countries":["IN"],"is_corresponding":false,"raw_author_name":"Ujjwal Pasupulety","raw_affiliation_strings":["Department of Information Technology, National Institute of Technology Karnataka Surathkal, Mangaluru"],"affiliations":[{"raw_affiliation_string":"Department of Information Technology, National Institute of Technology Karnataka Surathkal, Mangaluru","institution_ids":["https://openalex.org/I11880225"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5077408227","display_name":"Aiman Abdullah Anees","orcid":null},"institutions":[{"id":"https://openalex.org/I11880225","display_name":"National Institute of Technology Karnataka","ror":"https://ror.org/01hz4v948","country_code":"IN","type":"funder","lineage":["https://openalex.org/I11880225"]}],"countries":["IN"],"is_corresponding":false,"raw_author_name":"Aiman Abdullah Anees","raw_affiliation_strings":["Department of Information Technology, National Institute of Technology Karnataka Surathkal, Mangaluru"],"affiliations":[{"raw_affiliation_string":"Department of Information Technology, National Institute of Technology Karnataka Surathkal, Mangaluru","institution_ids":["https://openalex.org/I11880225"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5059771966","display_name":"Subham Anmol","orcid":null},"institutions":[{"id":"https://openalex.org/I11880225","display_name":"National Institute of Technology Karnataka","ror":"https://ror.org/01hz4v948","country_code":"IN","type":"funder","lineage":["https://openalex.org/I11880225"]}],"countries":["IN"],"is_corresponding":false,"raw_author_name":"Subham Anmol","raw_affiliation_strings":["Department of Information Technology, National Institute of Technology Karnataka Surathkal, Mangaluru"],"affiliations":[{"raw_affiliation_string":"Department of Information Technology, National Institute of Technology Karnataka Surathkal, Mangaluru","institution_ids":["https://openalex.org/I11880225"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5032581304","display_name":"Biju R. Mohan","orcid":"https://orcid.org/0000-0002-3928-8924"},"institutions":[{"id":"https://openalex.org/I11880225","display_name":"National Institute of Technology Karnataka","ror":"https://ror.org/01hz4v948","country_code":"IN","type":"funder","lineage":["https://openalex.org/I11880225"]}],"countries":["IN"],"is_corresponding":false,"raw_author_name":"Biju R. Mohan","raw_affiliation_strings":["Department of Information Technology, National Institute of Technology Karnataka Surathkal, Mangaluru"],"affiliations":[{"raw_affiliation_string":"Department of Information Technology, National Institute of Technology Karnataka Surathkal, Mangaluru","institution_ids":["https://openalex.org/I11880225"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":5.677,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":42,"citation_normalized_percentile":{"value":0.943864,"is_in_top_1_percent":false,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":95,"max":96},"biblio":{"volume":null,"issue":null,"first_page":"215","last_page":"222"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11326","display_name":"Stock Market Forecasting Methods","score":1.0,"subfield":{"id":"https://openalex.org/subfields/1803","display_name":"Management Science and Operations Research"},"field":{"id":"https://openalex.org/fields/18","display_name":"Decision Sciences"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}},"topics":[{"id":"https://openalex.org/T11326","display_name":"Stock Market Forecasting Methods","score":1.0,"subfield":{"id":"https://openalex.org/subfields/1803","display_name":"Management Science and Operations Research"},"field":{"id":"https://openalex.org/fields/18","display_name":"Decision Sciences"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}},{"id":"https://openalex.org/T10664","display_name":"Sentiment Analysis and Opinion Mining","score":0.9934,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11052","display_name":"Energy Load and Power Forecasting","score":0.9913,"subfield":{"id":"https://openalex.org/subfields/2208","display_name":"Electrical and Electronic Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/word2vec","display_name":"Word2vec","score":0.62142354},{"id":"https://openalex.org/keywords/ensemble-learning","display_name":"Ensemble Learning","score":0.50951654},{"id":"https://openalex.org/keywords/sentiment-analysis","display_name":"Sentiment Analysis","score":0.48647687},{"id":"https://openalex.org/keywords/technical-analysis","display_name":"Technical analysis","score":0.46805117},{"id":"https://openalex.org/keywords/feature-engineering","display_name":"Feature Engineering","score":0.4665363},{"id":"https://openalex.org/keywords/ensemble-forecasting","display_name":"Ensemble forecasting","score":0.42000195}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.7059181},{"id":"https://openalex.org/C169258074","wikidata":"https://www.wikidata.org/wiki/Q245748","display_name":"Random forest","level":2,"score":0.6688367},{"id":"https://openalex.org/C2776461190","wikidata":"https://www.wikidata.org/wiki/Q22673982","display_name":"Word2vec","level":3,"score":0.62142354},{"id":"https://openalex.org/C12267149","wikidata":"https://www.wikidata.org/wiki/Q282453","display_name":"Support vector machine","level":2,"score":0.61796165},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.5716449},{"id":"https://openalex.org/C2778775528","wikidata":"https://www.wikidata.org/wiki/Q5135432","display_name":"Closing (real estate)","level":2,"score":0.56498843},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.52195996},{"id":"https://openalex.org/C45942800","wikidata":"https://www.wikidata.org/wiki/Q245652","display_name":"Ensemble learning","level":2,"score":0.50951654},{"id":"https://openalex.org/C66402592","wikidata":"https://www.wikidata.org/wiki/Q2271421","display_name":"Sentiment analysis","level":2,"score":0.48647687},{"id":"https://openalex.org/C117245426","wikidata":"https://www.wikidata.org/wiki/Q235038","display_name":"Technical analysis","level":2,"score":0.46805117},{"id":"https://openalex.org/C2778827112","wikidata":"https://www.wikidata.org/wiki/Q22245680","display_name":"Feature engineering","level":3,"score":0.4665363},{"id":"https://openalex.org/C2780299701","wikidata":"https://www.wikidata.org/wiki/Q475000","display_name":"Stock market","level":3,"score":0.44784844},{"id":"https://openalex.org/C148483581","wikidata":"https://www.wikidata.org/wiki/Q446488","display_name":"Feature selection","level":2,"score":0.42938286},{"id":"https://openalex.org/C119898033","wikidata":"https://www.wikidata.org/wiki/Q3433888","display_name":"Ensemble forecasting","level":2,"score":0.42000195},{"id":"https://openalex.org/C149782125","wikidata":"https://www.wikidata.org/wiki/Q160039","display_name":"Econometrics","level":1,"score":0.35356116},{"id":"https://openalex.org/C108583219","wikidata":"https://www.wikidata.org/wiki/Q197536","display_name":"Deep learning","level":2,"score":0.2613718},{"id":"https://openalex.org/C10138342","wikidata":"https://www.wikidata.org/wiki/Q43015","display_name":"Finance","level":1,"score":0.13805202},{"id":"https://openalex.org/C162324750","wikidata":"https://www.wikidata.org/wiki/Q8134","display_name":"Economics","level":0,"score":0.09327766},{"id":"https://openalex.org/C151730666","wikidata":"https://www.wikidata.org/wiki/Q7205","display_name":"Paleontology","level":1,"score":0.0},{"id":"https://openalex.org/C41608201","wikidata":"https://www.wikidata.org/wiki/Q980509","display_name":"Embedding","level":2,"score":0.0},{"id":"https://openalex.org/C2780762169","wikidata":"https://www.wikidata.org/wiki/Q5905368","display_name":"Horse","level":2,"score":0.0},{"id":"https://openalex.org/C86803240","wikidata":"https://www.wikidata.org/wiki/Q420","display_name":"Biology","level":0,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/aike.2019.00045","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":24,"referenced_works":["https://openalex.org/W1549571940","https://openalex.org/W1614298861","https://openalex.org/W168564468","https://openalex.org/W2101234009","https://openalex.org/W2113459411","https://openalex.org/W2143017621","https://openalex.org/W2166706824","https://openalex.org/W2233997611","https://openalex.org/W2290190008","https://openalex.org/W2542080616","https://openalex.org/W2564757211","https://openalex.org/W2571811882","https://openalex.org/W2585092264","https://openalex.org/W2589531913","https://openalex.org/W2609521642","https://openalex.org/W2646814092","https://openalex.org/W2737645111","https://openalex.org/W2766774900","https://openalex.org/W2785336079","https://openalex.org/W2799462250","https://openalex.org/W2894449602","https://openalex.org/W2914369697","https://openalex.org/W4236531915","https://openalex.org/W4240294902"],"related_works":["https://openalex.org/W4390971112","https://openalex.org/W3204228978","https://openalex.org/W3202800081","https://openalex.org/W3101614107","https://openalex.org/W3036530763","https://openalex.org/W2891633941","https://openalex.org/W2794896638","https://openalex.org/W2155806188","https://openalex.org/W1909207154","https://openalex.org/W1514365828"],"abstract_inverted_index":{"The":[0],"recent":[1],"success":[2],"of":[3,6,26,80,121,135,144,149,195,198,223,228,249],"the":[4,10,24,27,83,124,133,136,142,146,186,192,210,216,224,229,247,250],"application":[5],"Artificial":[7],"Intelligence":[8],"in":[9,15,62,207],"financial":[11],"sector":[12],"has":[13,128,242],"resulted":[14],"more":[16],"firms":[17],"relying":[18],"on":[19,118,123,180,246],"stochastic":[20],"models":[21,41,56,218],"for":[22,42,59,74],"predicting":[23,64,77],"behaviour":[25],"market.":[28],"Everyday,":[29],"quantitative":[30],"analysts":[31],"strive":[32],"to":[33,103,131],"attain":[34],"better":[35,214],"accuracies":[36],"from":[37,45,90,165],"their":[38,60,119],"machine":[39],"learning":[40],"forecasting":[43],"returns":[44],"stocks.":[46],"Support":[47],"Vector":[48],"Machine":[49],"(SVM)":[50],"and":[51,76,219,226],"Random":[52],"Forest":[53],"based":[54,117],"regression":[55],"are":[57,101,167],"known":[58,106],"effectiveness":[61,143],"accurately":[63],"closing":[65,126],"prices.":[66],"In":[67],"this":[68],"work,":[69],"we":[70,140],"propose":[71],"a":[72,150,157,181,199,243],"technique":[73],"analyzing":[75],"stock":[78],"prices":[79],"companies":[81],"using":[82],"aforementioned":[84],"algorithms":[85],"as":[86,110,169],"an":[87],"ensemble.":[88],"Datasets":[89],"India's":[91],"National":[92],"Stock":[93],"Exchange":[94],"(NSE)":[95],"containing":[96],"basic":[97],"market":[98],"price":[99,127],"information":[100],"preprocessed":[102],"include":[104],"well":[105],"leading":[107],"technical":[108,187,234],"indicators":[109],"features.":[111],"Feature":[112],"selection,":[113],"which":[114,184],"ranks":[115],"features":[116],"degree":[120],"influence":[122],"final":[125],"been":[129],"incorporated":[130],"reduce":[132],"size":[134,227],"training":[137,230],"dataset.":[138],"Additionally,":[139],"evaluate":[141],"considering":[145],"public":[147],"opinion":[148],"company":[151,161,200],"by":[152],"employing":[153],"sentiment":[154],"analysis.":[155],"Using":[156],"trained":[158,179],"Word2Vec":[159],"model,":[160],"specific":[162],"hash-tagged":[163],"posts":[164],"Twitter":[166],"classified":[168],"positive":[170],"or":[171],"negative.":[172],"Our":[173,203],"proposed":[174],"ensemble":[175,211,251],"model":[176,212],"is":[177,220],"then":[178],"new":[182],"dataset":[183],"combines":[185],"indicator":[188,235],"data":[189,236],"along":[190],"with":[191,237],"aggregated":[193,238],"number":[194],"positive/negative":[196,239],"tweets":[197],"over":[201],"time.":[202],"experiments":[204],"indicate":[205],"that":[206],"some":[208],"scenarios,":[209],"performs":[213],"than":[215],"constituent":[217],"highly":[221],"dependent":[222],"nature":[225],"data.":[231],"However,":[232],"combining":[233],"tweet":[240],"counts":[241],"negligible":[244],"effect":[245],"performance":[248],"model.":[252]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2968209746","counts_by_year":[{"year":2025,"cited_by_count":1},{"year":2024,"cited_by_count":6},{"year":2023,"cited_by_count":10},{"year":2022,"cited_by_count":3},{"year":2021,"cited_by_count":18},{"year":2020,"cited_by_count":4}],"updated_date":"2025-03-21T08:15:48.985085","created_date":"2019-08-22"}