{"id":"https://openalex.org/W4383501799","doi":"https://doi.org/10.1109/aicas57966.2023.10168552","title":"A 12-Lead ECG Delineation Algorithm based on a Quantized CNN-BiLSTM Auto-encoder with 1-12 Mapping","display_name":"A 12-Lead ECG Delineation Algorithm based on a Quantized CNN-BiLSTM Auto-encoder with 1-12 Mapping","publication_year":2023,"publication_date":"2023-06-11","ids":{"openalex":"https://openalex.org/W4383501799","doi":"https://doi.org/10.1109/aicas57966.2023.10168552"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/aicas57966.2023.10168552","pdf_url":null,"source":{"id":"https://openalex.org/S4363608281","display_name":"2022 IEEE 4th International Conference on Artificial Intelligence Circuits and Systems (AICAS)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5089442753","display_name":"Xinzi Xu","orcid":"https://orcid.org/0000-0001-5869-1631"},"institutions":[{"id":"https://openalex.org/I183067930","display_name":"Shanghai Jiao Tong University","ror":"https://ror.org/0220qvk04","country_code":"CN","type":"education","lineage":["https://openalex.org/I183067930"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Xinzi Xu","raw_affiliation_strings":["Department of Micro-Nano Electronics, Shanghai Jiao Tong University, Shanghai, China"],"affiliations":[{"raw_affiliation_string":"Department of Micro-Nano Electronics, Shanghai Jiao Tong University, Shanghai, China","institution_ids":["https://openalex.org/I183067930"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5059574664","display_name":"Qiao Cai","orcid":"https://orcid.org/0000-0003-2662-7066"},"institutions":[{"id":"https://openalex.org/I183067930","display_name":"Shanghai Jiao Tong University","ror":"https://ror.org/0220qvk04","country_code":"CN","type":"education","lineage":["https://openalex.org/I183067930"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Qiao Cai","raw_affiliation_strings":["Department of Micro-Nano Electronics, Shanghai Jiao Tong University, Shanghai, China"],"affiliations":[{"raw_affiliation_string":"Department of Micro-Nano Electronics, Shanghai Jiao Tong University, Shanghai, China","institution_ids":["https://openalex.org/I183067930"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5004128277","display_name":"Hongqian Wang","orcid":"https://orcid.org/0000-0002-1432-5012"},"institutions":[{"id":"https://openalex.org/I183067930","display_name":"Shanghai Jiao Tong University","ror":"https://ror.org/0220qvk04","country_code":"CN","type":"education","lineage":["https://openalex.org/I183067930"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Hongqian Wang","raw_affiliation_strings":["Department of Micro-Nano Electronics, Shanghai Jiao Tong University, Shanghai, China"],"affiliations":[{"raw_affiliation_string":"Department of Micro-Nano Electronics, Shanghai Jiao Tong University, Shanghai, China","institution_ids":["https://openalex.org/I183067930"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5032195536","display_name":"Yanxing Suo","orcid":"https://orcid.org/0000-0002-0307-609X"},"institutions":[{"id":"https://openalex.org/I183067930","display_name":"Shanghai Jiao Tong University","ror":"https://ror.org/0220qvk04","country_code":"CN","type":"education","lineage":["https://openalex.org/I183067930"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Yanxing Suo","raw_affiliation_strings":["Department of Micro-Nano Electronics, Shanghai Jiao Tong University, Shanghai, China"],"affiliations":[{"raw_affiliation_string":"Department of Micro-Nano Electronics, Shanghai Jiao Tong University, Shanghai, China","institution_ids":["https://openalex.org/I183067930"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5026918905","display_name":"Yang Zhao","orcid":"https://orcid.org/0000-0002-2236-6092"},"institutions":[{"id":"https://openalex.org/I183067930","display_name":"Shanghai Jiao Tong University","ror":"https://ror.org/0220qvk04","country_code":"CN","type":"education","lineage":["https://openalex.org/I183067930"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Yang Zhao","raw_affiliation_strings":["Department of Micro-Nano Electronics, Shanghai Jiao Tong University, Shanghai, China"],"affiliations":[{"raw_affiliation_string":"Department of Micro-Nano Electronics, Shanghai Jiao Tong University, Shanghai, China","institution_ids":["https://openalex.org/I183067930"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5092420990","display_name":"Wan Tianwei","orcid":null},"institutions":[],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Wan Tianwei","raw_affiliation_strings":["Qingdao Tianzhuo Technology Invest-Holding Limited Company, Qingdao, China"],"affiliations":[{"raw_affiliation_string":"Qingdao Tianzhuo Technology Invest-Holding Limited Company, Qingdao, China","institution_ids":[]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5087716003","display_name":"Guoxing Wang","orcid":"https://orcid.org/0000-0002-0235-1475"},"institutions":[{"id":"https://openalex.org/I183067930","display_name":"Shanghai Jiao Tong University","ror":"https://ror.org/0220qvk04","country_code":"CN","type":"education","lineage":["https://openalex.org/I183067930"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Guoxing Wang","raw_affiliation_strings":["Department of Micro-Nano Electronics, Shanghai Jiao Tong University, Shanghai, China"],"affiliations":[{"raw_affiliation_string":"Department of Micro-Nano Electronics, Shanghai Jiao Tong University, Shanghai, China","institution_ids":["https://openalex.org/I183067930"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5061924587","display_name":"Yong Lian","orcid":"https://orcid.org/0000-0002-5289-5219"},"institutions":[{"id":"https://openalex.org/I183067930","display_name":"Shanghai Jiao Tong University","ror":"https://ror.org/0220qvk04","country_code":"CN","type":"education","lineage":["https://openalex.org/I183067930"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Yong Lian","raw_affiliation_strings":["Department of Micro-Nano Electronics, Shanghai Jiao Tong University, Shanghai, China"],"affiliations":[{"raw_affiliation_string":"Department of Micro-Nano Electronics, Shanghai Jiao Tong University, Shanghai, China","institution_ids":["https://openalex.org/I183067930"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":1.208,"has_fulltext":false,"cited_by_count":2,"citation_normalized_percentile":{"value":0.999959,"is_in_top_1_percent":true,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":79,"max":85},"biblio":{"volume":null,"issue":null,"first_page":"1","last_page":"5"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11021","display_name":"ECG Monitoring and Analysis","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/2705","display_name":"Cardiology and Cardiovascular Medicine"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}},"topics":[{"id":"https://openalex.org/T11021","display_name":"ECG Monitoring and Analysis","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/2705","display_name":"Cardiology and Cardiovascular Medicine"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}},{"id":"https://openalex.org/T10429","display_name":"EEG and Brain-Computer Interfaces","score":0.9886,"subfield":{"id":"https://openalex.org/subfields/2805","display_name":"Cognitive Neuroscience"},"field":{"id":"https://openalex.org/fields/28","display_name":"Neuroscience"},"domain":{"id":"https://openalex.org/domains/1","display_name":"Life Sciences"}},{"id":"https://openalex.org/T11196","display_name":"Non-Invasive Vital Sign Monitoring","score":0.9854,"subfield":{"id":"https://openalex.org/subfields/2204","display_name":"Biomedical Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/autoencoder","display_name":"Autoencoder","score":0.7444336},{"id":"https://openalex.org/keywords/robustness","display_name":"Robustness (evolution)","score":0.5787521},{"id":"https://openalex.org/keywords/deep-learning-for-eeg","display_name":"Deep Learning for EEG","score":0.56965},{"id":"https://openalex.org/keywords/eeg-analysis","display_name":"EEG Analysis","score":0.554177},{"id":"https://openalex.org/keywords/arrhythmia-detection","display_name":"Arrhythmia Detection","score":0.541925},{"id":"https://openalex.org/keywords/continuous-blood-pressure-estimation","display_name":"Continuous Blood Pressure Estimation","score":0.534365},{"id":"https://openalex.org/keywords/ecg-signal","display_name":"ECG Signal","score":0.519907},{"id":"https://openalex.org/keywords/lead","display_name":"Lead (geology)","score":0.4305855}],"concepts":[{"id":"https://openalex.org/C101738243","wikidata":"https://www.wikidata.org/wiki/Q786435","display_name":"Autoencoder","level":3,"score":0.7444336},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.66284484},{"id":"https://openalex.org/C28855332","wikidata":"https://www.wikidata.org/wiki/Q198099","display_name":"Quantization (signal processing)","level":2,"score":0.6259581},{"id":"https://openalex.org/C111773187","wikidata":"https://www.wikidata.org/wiki/Q1969239","display_name":"QRS complex","level":2,"score":0.6168439},{"id":"https://openalex.org/C63479239","wikidata":"https://www.wikidata.org/wiki/Q7353546","display_name":"Robustness (evolution)","level":3,"score":0.5787521},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.55849046},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.5471505},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.46922287},{"id":"https://openalex.org/C118505674","wikidata":"https://www.wikidata.org/wiki/Q42586063","display_name":"Encoder","level":2,"score":0.46153462},{"id":"https://openalex.org/C2777093003","wikidata":"https://www.wikidata.org/wiki/Q6508345","display_name":"Lead (geology)","level":2,"score":0.4305855},{"id":"https://openalex.org/C104267543","wikidata":"https://www.wikidata.org/wiki/Q208163","display_name":"Signal processing","level":3,"score":0.41818428},{"id":"https://openalex.org/C108583219","wikidata":"https://www.wikidata.org/wiki/Q197536","display_name":"Deep learning","level":2,"score":0.37089783},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.345483},{"id":"https://openalex.org/C84462506","wikidata":"https://www.wikidata.org/wiki/Q173142","display_name":"Digital signal processing","level":2,"score":0.079938054},{"id":"https://openalex.org/C71924100","wikidata":"https://www.wikidata.org/wiki/Q11190","display_name":"Medicine","level":0,"score":0.0},{"id":"https://openalex.org/C55493867","wikidata":"https://www.wikidata.org/wiki/Q7094","display_name":"Biochemistry","level":1,"score":0.0},{"id":"https://openalex.org/C185592680","wikidata":"https://www.wikidata.org/wiki/Q2329","display_name":"Chemistry","level":0,"score":0.0},{"id":"https://openalex.org/C114793014","wikidata":"https://www.wikidata.org/wiki/Q52109","display_name":"Geomorphology","level":1,"score":0.0},{"id":"https://openalex.org/C9390403","wikidata":"https://www.wikidata.org/wiki/Q3966","display_name":"Computer hardware","level":1,"score":0.0},{"id":"https://openalex.org/C164705383","wikidata":"https://www.wikidata.org/wiki/Q10379","display_name":"Cardiology","level":1,"score":0.0},{"id":"https://openalex.org/C104317684","wikidata":"https://www.wikidata.org/wiki/Q7187","display_name":"Gene","level":2,"score":0.0},{"id":"https://openalex.org/C127313418","wikidata":"https://www.wikidata.org/wiki/Q1069","display_name":"Geology","level":0,"score":0.0},{"id":"https://openalex.org/C111919701","wikidata":"https://www.wikidata.org/wiki/Q9135","display_name":"Operating system","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/aicas57966.2023.10168552","pdf_url":null,"source":{"id":"https://openalex.org/S4363608281","display_name":"2022 IEEE 4th International Conference on Artificial Intelligence Circuits and Systems (AICAS)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[],"grants":[{"funder":"https://openalex.org/F4320335777","funder_display_name":"National Key Research and Development Program of China","award_id":null}],"datasets":[],"versions":[],"referenced_works_count":15,"referenced_works":["https://openalex.org/W2127510558","https://openalex.org/W2166704538","https://openalex.org/W2589049692","https://openalex.org/W2943118732","https://openalex.org/W2950663303","https://openalex.org/W3017022649","https://openalex.org/W3091994574","https://openalex.org/W3099074725","https://openalex.org/W3120886412","https://openalex.org/W3126999565","https://openalex.org/W3176472851","https://openalex.org/W3185818605","https://openalex.org/W3204337982","https://openalex.org/W4288391576","https://openalex.org/W4294690655"],"related_works":["https://openalex.org/W4386815338","https://openalex.org/W4297051394","https://openalex.org/W3131327266","https://openalex.org/W3013693939","https://openalex.org/W2803255133","https://openalex.org/W2752972570","https://openalex.org/W2734887215","https://openalex.org/W2566616303","https://openalex.org/W2159052453","https://openalex.org/W2145836866"],"abstract_inverted_index":{"12-lead":[0,17,96],"electrocardiogram":[1],"(ECG)":[2],"delineation":[3,19,93],"is":[4,33,43,62,123],"a":[5,30,99,135],"critical":[6],"step":[7],"in":[8],"diagnosing":[9],"of":[10,24,69,84,101,107,138],"various":[11],"heart":[12],"diseases.":[13],"Current":[14],"practices":[15],"for":[16,95,112],"ECG":[18,70,97],"typically":[20],"involve":[21],"processing":[22],"each":[23],"the":[25,66,82,85,92],"12":[26],"leads":[27,54],"separately":[28],"using":[29],"network,":[31],"which":[32],"computationally":[34],"expensive.":[35],"To":[36],"solve":[37],"this":[38],"issue,":[39],"1-12":[40],"mapping":[41],"strategy":[42],"proposed":[44],"to":[45,52,64,80,125,129],"directly":[46],"map":[47],"one":[48,131],"lead":[49],"network":[50],"predictions":[51],"other":[53],"and":[55,75,90,104,110,116],"then":[56],"fine-tune":[57],"boundaries.":[58],"CNN-BiLSTM":[59],"autoencoder":[60],"architecture":[61],"employed":[63,124],"model":[65,128],"sequential":[67],"dependencies":[68],"signal.":[71],"Besides,":[72],"data":[73],"augmentation":[74],"mixed":[76],"losses":[77],"are":[78],"utilized":[79],"enhance":[81],"robustness":[83],"network.":[86],"Evaluated":[87],"on":[88],"QTDB":[89],"LUDB,":[91],"results":[94],"achieve":[98],"Se":[100],"97%,":[102],"99%,":[103],"98%,":[105],"DS":[106],"95.3%,":[108],"96.2%,":[109],"94.4%":[111],"P-wave,":[113],"QRS":[114],"complex,":[115],"T-wave":[117],"respectively.":[118],"At":[119],"last,":[120],"quantization-aware":[121],"training":[122],"convert":[126],"float32":[127],"int8":[130],"with":[132],"only":[133],"about":[134],"2%":[136],"drop":[137],"accuracy.":[139]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4383501799","counts_by_year":[{"year":2024,"cited_by_count":1},{"year":2023,"cited_by_count":1}],"updated_date":"2024-12-05T13:43:10.829439","created_date":"2023-07-08"}