{"id":"https://openalex.org/W2038506683","doi":"https://doi.org/10.1109/acssc.2014.7094553","title":"A Hebbian/Anti-Hebbian network derived from online non-negative matrix factorization can cluster and discover sparse features","display_name":"A Hebbian/Anti-Hebbian network derived from online non-negative matrix factorization can cluster and discover sparse features","publication_year":2014,"publication_date":"2014-11-01","ids":{"openalex":"https://openalex.org/W2038506683","doi":"https://doi.org/10.1109/acssc.2014.7094553","mag":"2038506683"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/acssc.2014.7094553","pdf_url":null,"source":{"id":"https://openalex.org/S4363608593","display_name":"2014 48th Asilomar Conference on Signals, Systems and Computers","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["arxiv","crossref","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/pdf/1503.00680","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5023195984","display_name":"Cengiz Pehlevan","orcid":"https://orcid.org/0000-0001-9767-6063"},"institutions":[{"id":"https://openalex.org/I195573530","display_name":"Janelia Research Campus","ror":"https://ror.org/013sk6x84","country_code":"US","type":"facility","lineage":["https://openalex.org/I1344073410","https://openalex.org/I195573530"]},{"id":"https://openalex.org/I1344073410","display_name":"Howard Hughes Medical Institute","ror":"https://ror.org/006w34k90","country_code":"US","type":"nonprofit","lineage":["https://openalex.org/I1344073410"]},{"id":"https://openalex.org/I4210107338","display_name":"Simons Foundation","ror":"https://ror.org/01cmst727","country_code":"US","type":"nonprofit","lineage":["https://openalex.org/I4210107338"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Cengiz Pehlevan","raw_affiliation_strings":["Janelia Farm Research Campus Howard Hughes Medical Institute, Ashburn, VA","Simons Center for Data Analysis Simons Foundation, New York"],"affiliations":[{"raw_affiliation_string":"Janelia Farm Research Campus Howard Hughes Medical Institute, Ashburn, VA","institution_ids":["https://openalex.org/I195573530","https://openalex.org/I1344073410"]},{"raw_affiliation_string":"Simons Center for Data Analysis Simons Foundation, New York","institution_ids":["https://openalex.org/I4210107338"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5062874541","display_name":"Dmitri B. Chklovskii","orcid":"https://orcid.org/0000-0002-4781-2546"},"institutions":[{"id":"https://openalex.org/I4210107338","display_name":"Simons Foundation","ror":"https://ror.org/01cmst727","country_code":"US","type":"nonprofit","lineage":["https://openalex.org/I4210107338"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Dmitri B. Chklovskii","raw_affiliation_strings":["Simons Center for Data Analysis Simons Foundation, New York"],"affiliations":[{"raw_affiliation_string":"Simons Center for Data Analysis Simons Foundation, New York","institution_ids":["https://openalex.org/I4210107338"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":3,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":4.067,"has_fulltext":true,"fulltext_origin":"pdf","cited_by_count":42,"citation_normalized_percentile":{"value":0.969981,"is_in_top_1_percent":false,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":95,"max":96},"biblio":{"volume":null,"issue":null,"first_page":"769","last_page":"775"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10581","display_name":"Neural dynamics and brain function","score":0.9997,"subfield":{"id":"https://openalex.org/subfields/2805","display_name":"Cognitive Neuroscience"},"field":{"id":"https://openalex.org/fields/28","display_name":"Neuroscience"},"domain":{"id":"https://openalex.org/domains/1","display_name":"Life Sciences"}},"topics":[{"id":"https://openalex.org/T10581","display_name":"Neural dynamics and brain function","score":0.9997,"subfield":{"id":"https://openalex.org/subfields/2805","display_name":"Cognitive Neuroscience"},"field":{"id":"https://openalex.org/fields/28","display_name":"Neuroscience"},"domain":{"id":"https://openalex.org/domains/1","display_name":"Life Sciences"}},{"id":"https://openalex.org/T10502","display_name":"Advanced Memory and Neural Computing","score":0.9979,"subfield":{"id":"https://openalex.org/subfields/2208","display_name":"Electrical and Electronic Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10320","display_name":"Neural Networks and Applications","score":0.9962,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/hebbian-theory","display_name":"Hebbian theory","score":0.917711},{"id":"https://openalex.org/keywords/non-negative-matrix-factorization","display_name":"Non-negative Matrix Factorization","score":0.7124374},{"id":"https://openalex.org/keywords/leabra","display_name":"Leabra","score":0.61304903},{"id":"https://openalex.org/keywords/matrix","display_name":"Matrix (chemical analysis)","score":0.46200415},{"id":"https://openalex.org/keywords/feature","display_name":"Feature (linguistics)","score":0.4335985},{"id":"https://openalex.org/keywords/competitive-learning","display_name":"Competitive learning","score":0.4273825},{"id":"https://openalex.org/keywords/similarity","display_name":"Similarity (geometry)","score":0.41114298}],"concepts":[{"id":"https://openalex.org/C111437709","wikidata":"https://www.wikidata.org/wiki/Q1277874","display_name":"Hebbian theory","level":3,"score":0.917711},{"id":"https://openalex.org/C152671427","wikidata":"https://www.wikidata.org/wiki/Q10843505","display_name":"Non-negative matrix factorization","level":4,"score":0.7124374},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.6804601},{"id":"https://openalex.org/C97108695","wikidata":"https://www.wikidata.org/wiki/Q6508265","display_name":"Leabra","level":5,"score":0.61304903},{"id":"https://openalex.org/C73555534","wikidata":"https://www.wikidata.org/wiki/Q622825","display_name":"Cluster analysis","level":2,"score":0.59657955},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.51899046},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.49191618},{"id":"https://openalex.org/C42355184","wikidata":"https://www.wikidata.org/wiki/Q1361088","display_name":"Matrix decomposition","level":3,"score":0.4675523},{"id":"https://openalex.org/C8038995","wikidata":"https://www.wikidata.org/wiki/Q1152135","display_name":"Unsupervised learning","level":2,"score":0.46242753},{"id":"https://openalex.org/C106487976","wikidata":"https://www.wikidata.org/wiki/Q685816","display_name":"Matrix (chemical analysis)","level":2,"score":0.46200415},{"id":"https://openalex.org/C14036430","wikidata":"https://www.wikidata.org/wiki/Q3736076","display_name":"Function (biology)","level":2,"score":0.45437568},{"id":"https://openalex.org/C2776401178","wikidata":"https://www.wikidata.org/wiki/Q12050496","display_name":"Feature (linguistics)","level":2,"score":0.4335985},{"id":"https://openalex.org/C120822770","wikidata":"https://www.wikidata.org/wiki/Q5156355","display_name":"Competitive learning","level":3,"score":0.4273825},{"id":"https://openalex.org/C103278499","wikidata":"https://www.wikidata.org/wiki/Q254465","display_name":"Similarity (geometry)","level":3,"score":0.41114298},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.35489255},{"id":"https://openalex.org/C17061570","wikidata":"https://www.wikidata.org/wiki/Q7960888","display_name":"Wake-sleep algorithm","level":4,"score":0.07678774},{"id":"https://openalex.org/C41895202","wikidata":"https://www.wikidata.org/wiki/Q8162","display_name":"Linguistics","level":1,"score":0.0},{"id":"https://openalex.org/C158693339","wikidata":"https://www.wikidata.org/wiki/Q190524","display_name":"Eigenvalues and eigenvectors","level":2,"score":0.0},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C192562407","wikidata":"https://www.wikidata.org/wiki/Q228736","display_name":"Materials science","level":0,"score":0.0},{"id":"https://openalex.org/C138885662","wikidata":"https://www.wikidata.org/wiki/Q5891","display_name":"Philosophy","level":0,"score":0.0},{"id":"https://openalex.org/C159985019","wikidata":"https://www.wikidata.org/wiki/Q181790","display_name":"Composite material","level":1,"score":0.0},{"id":"https://openalex.org/C62520636","wikidata":"https://www.wikidata.org/wiki/Q944","display_name":"Quantum mechanics","level":1,"score":0.0},{"id":"https://openalex.org/C78458016","wikidata":"https://www.wikidata.org/wiki/Q840400","display_name":"Evolutionary biology","level":1,"score":0.0},{"id":"https://openalex.org/C117765406","wikidata":"https://www.wikidata.org/wiki/Q5362437","display_name":"Generalization error","level":3,"score":0.0},{"id":"https://openalex.org/C86803240","wikidata":"https://www.wikidata.org/wiki/Q420","display_name":"Biology","level":0,"score":0.0},{"id":"https://openalex.org/C115961682","wikidata":"https://www.wikidata.org/wiki/Q860623","display_name":"Image (mathematics)","level":2,"score":0.0}],"mesh":[],"locations_count":3,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/acssc.2014.7094553","pdf_url":null,"source":{"id":"https://openalex.org/S4363608593","display_name":"2014 48th Asilomar Conference on Signals, Systems and Computers","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/1503.00680","pdf_url":"https://arxiv.org/pdf/1503.00680","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.1503.00680","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/1503.00680","pdf_url":"https://arxiv.org/pdf/1503.00680","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":["https://openalex.org/W2038506683"],"referenced_works_count":35,"referenced_works":["https://openalex.org/W1504886279","https://openalex.org/W180242331","https://openalex.org/W1976440390","https://openalex.org/W1988013646","https://openalex.org/W1990007244","https://openalex.org/W2006885933","https://openalex.org/W2009642296","https://openalex.org/W2017213222","https://openalex.org/W2036225711","https://openalex.org/W2042925217","https://openalex.org/W2074376560","https://openalex.org/W2083046441","https://openalex.org/W2105464873","https://openalex.org/W2116360511","https://openalex.org/W2118858186","https://openalex.org/W2122724372","https://openalex.org/W2123649031","https://openalex.org/W2127218421","https://openalex.org/W2131329059","https://openalex.org/W2133671888","https://openalex.org/W2137234026","https://openalex.org/W2144219012","https://openalex.org/W2145889472","https://openalex.org/W2152477898","https://openalex.org/W2154904842","https://openalex.org/W2160060889","https://openalex.org/W2160422165","https://openalex.org/W2432567885","https://openalex.org/W2571268788","https://openalex.org/W2978311037","https://openalex.org/W3102303919","https://openalex.org/W4250621041","https://openalex.org/W4298069009","https://openalex.org/W5731987","https://openalex.org/W65738273"],"related_works":["https://openalex.org/W4387853727","https://openalex.org/W4321853849","https://openalex.org/W4285340753","https://openalex.org/W3180828476","https://openalex.org/W2963219950","https://openalex.org/W2899454144","https://openalex.org/W2896927215","https://openalex.org/W2590565095","https://openalex.org/W1950019275","https://openalex.org/W1483579134"],"abstract_inverted_index":{"Despite":[0],"our":[1],"extensive":[2],"knowledge":[3],"of":[4,7,16,35,39,76,92,98,103,116,132],"biophysical":[5,96],"properties":[6,97],"neurons,":[8],"there":[9],"is":[10],"no":[11],"commonly":[12],"accepted":[13],"algorithmic":[14,130],"theory":[15,131],"neuronal":[17,26,104,121,133],"function.":[18],"Here":[19],"we":[20,50,124],"explore":[21],"the":[22,36,40,46,77,114],"hypothesis":[23],"that":[24,70],"single-layer":[25],"networks":[27],"perform":[28],"online":[29,53],"symmetric":[30],"nonnegative":[31],"matrix":[32,38],"factorization":[33],"(SNMF)":[34],"similarity":[37],"streamed":[41],"data.":[42],"By":[43],"starting":[44],"with":[45,64],"SNMF":[47],"cost":[48],"function":[49],"derive":[51],"an":[52,129],"algorithm,":[54],"which":[55,135],"can":[56],"be":[57],"implemented":[58],"by":[59],"a":[60,126],"biologically":[61,143],"plausible":[62],"network":[63,72],"local":[65,109],"learning":[66,117],"rules.":[67],"We":[68],"demonstrate":[69],"such":[71],"performs":[73],"soft":[74],"clustering":[75],"data":[78],"as":[79,81],"well":[80],"sparse":[82],"feature":[83],"discovery.":[84],"The":[85],"derived":[86],"algorithm":[87],"replicates":[88],"many":[89],"known":[90],"aspects":[91],"sensory":[93],"anatomy":[94],"and":[95,106,113,142],"neurons":[99],"including":[100],"unipolar":[101],"nature":[102],"activity":[105],"synaptic":[107,110],"weights,":[108],"plasticity":[111],"rules":[112],"dependence":[115],"rate":[118],"on":[119],"cumulative":[120],"activity.":[122],"Thus,":[123],"make":[125],"step":[127],"towards":[128],"function,":[134],"should":[136],"facilitate":[137],"large-scale":[138],"neural":[139],"circuit":[140],"simulations":[141],"inspired":[144],"artificial":[145],"intelligence.":[146]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2038506683","counts_by_year":[{"year":2024,"cited_by_count":1},{"year":2023,"cited_by_count":2},{"year":2022,"cited_by_count":2},{"year":2021,"cited_by_count":6},{"year":2020,"cited_by_count":5},{"year":2019,"cited_by_count":8},{"year":2018,"cited_by_count":4},{"year":2017,"cited_by_count":10},{"year":2016,"cited_by_count":2},{"year":2015,"cited_by_count":1},{"year":2014,"cited_by_count":1}],"updated_date":"2025-01-18T19:52:18.575361","created_date":"2016-06-24"}