{"id":"https://openalex.org/W2011760429","doi":"https://doi.org/10.1109/acpr.2013.163","title":"Label-Related/Unrelated Topic Switching Model: A Partially Labeled Topic Model Handling Infinite Label-Unrelated Topics","display_name":"Label-Related/Unrelated Topic Switching Model: A Partially Labeled Topic Model Handling Infinite Label-Unrelated Topics","publication_year":2013,"publication_date":"2013-11-01","ids":{"openalex":"https://openalex.org/W2011760429","doi":"https://doi.org/10.1109/acpr.2013.163","mag":"2011760429"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/acpr.2013.163","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5086509276","display_name":"Yasutoshi Ida","orcid":"https://orcid.org/0000-0003-4279-9503"},"institutions":[{"id":"https://openalex.org/I150744194","display_name":"Waseda University","ror":"https://ror.org/00ntfnx83","country_code":"JP","type":"education","lineage":["https://openalex.org/I150744194"]}],"countries":["JP"],"is_corresponding":false,"raw_author_name":"Yasutoshi Ida","raw_affiliation_strings":["Dept. of Electr. Eng. & Biosci., Waseda Univ., Tokyo, Japan"],"affiliations":[{"raw_affiliation_string":"Dept. of Electr. Eng. & Biosci., Waseda Univ., Tokyo, Japan","institution_ids":["https://openalex.org/I150744194"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5042701707","display_name":"Takuma Nakamura","orcid":"https://orcid.org/0000-0001-7904-4724"},"institutions":[{"id":"https://openalex.org/I150744194","display_name":"Waseda University","ror":"https://ror.org/00ntfnx83","country_code":"JP","type":"education","lineage":["https://openalex.org/I150744194"]}],"countries":["JP"],"is_corresponding":false,"raw_author_name":"Takuma Nakamura","raw_affiliation_strings":["Dept. of Electr. Eng. & Biosci., Waseda Univ., Tokyo, Japan"],"affiliations":[{"raw_affiliation_string":"Dept. of Electr. Eng. & Biosci., Waseda Univ., Tokyo, Japan","institution_ids":["https://openalex.org/I150744194"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5019731128","display_name":"Takashi Matsumoto","orcid":"https://orcid.org/0000-0002-7873-2303"},"institutions":[{"id":"https://openalex.org/I150744194","display_name":"Waseda University","ror":"https://ror.org/00ntfnx83","country_code":"JP","type":"education","lineage":["https://openalex.org/I150744194"]}],"countries":["JP"],"is_corresponding":false,"raw_author_name":"Takashi Matsumoto","raw_affiliation_strings":["Dept. of Electr. Eng. & Biosci., Waseda Univ., Tokyo, Japan"],"affiliations":[{"raw_affiliation_string":"Dept. of Electr. Eng. & Biosci., Waseda Univ., Tokyo, Japan","institution_ids":["https://openalex.org/I150744194"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.161,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":1,"citation_normalized_percentile":{"value":0.202179,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":65,"max":72},"biblio":{"volume":null,"issue":null,"first_page":"892","last_page":"896"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10028","display_name":"Topic Modeling","score":0.9983,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10028","display_name":"Topic Modeling","score":0.9983,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11550","display_name":"Text and Document Classification Technologies","score":0.9977,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10824","display_name":"Image Retrieval and Classification Techniques","score":0.9977,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/perplexity","display_name":"Perplexity","score":0.9418905},{"id":"https://openalex.org/keywords/multi-label-classification","display_name":"Multi-label classification","score":0.5359073}],"concepts":[{"id":"https://openalex.org/C100279451","wikidata":"https://www.wikidata.org/wiki/Q372193","display_name":"Perplexity","level":3,"score":0.9418905},{"id":"https://openalex.org/C500882744","wikidata":"https://www.wikidata.org/wiki/Q269236","display_name":"Latent Dirichlet allocation","level":3,"score":0.91308045},{"id":"https://openalex.org/C171686336","wikidata":"https://www.wikidata.org/wiki/Q3532085","display_name":"Topic model","level":2,"score":0.8248205},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.7324289},{"id":"https://openalex.org/C169214877","wikidata":"https://www.wikidata.org/wiki/Q981016","display_name":"Dirichlet distribution","level":3,"score":0.58385324},{"id":"https://openalex.org/C107673813","wikidata":"https://www.wikidata.org/wiki/Q812534","display_name":"Bayesian probability","level":2,"score":0.58305496},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.56780016},{"id":"https://openalex.org/C2776482837","wikidata":"https://www.wikidata.org/wiki/Q3553958","display_name":"Multi-label classification","level":2,"score":0.5359073},{"id":"https://openalex.org/C90805587","wikidata":"https://www.wikidata.org/wiki/Q10944557","display_name":"Word (group theory)","level":2,"score":0.5066262},{"id":"https://openalex.org/C2776502983","wikidata":"https://www.wikidata.org/wiki/Q690182","display_name":"Contrast (vision)","level":2,"score":0.47428924},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.45730263},{"id":"https://openalex.org/C204321447","wikidata":"https://www.wikidata.org/wiki/Q30642","display_name":"Natural language processing","level":1,"score":0.43308753},{"id":"https://openalex.org/C177769412","wikidata":"https://www.wikidata.org/wiki/Q278090","display_name":"Prior probability","level":3,"score":0.4181787},{"id":"https://openalex.org/C137293760","wikidata":"https://www.wikidata.org/wiki/Q3621696","display_name":"Language model","level":2,"score":0.33173215},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.142723},{"id":"https://openalex.org/C134306372","wikidata":"https://www.wikidata.org/wiki/Q7754","display_name":"Mathematical analysis","level":1,"score":0.0},{"id":"https://openalex.org/C2524010","wikidata":"https://www.wikidata.org/wiki/Q8087","display_name":"Geometry","level":1,"score":0.0},{"id":"https://openalex.org/C182310444","wikidata":"https://www.wikidata.org/wiki/Q1332643","display_name":"Boundary value problem","level":2,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/acpr.2013.163","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":16,"referenced_works":["https://openalex.org/W1666447063","https://openalex.org/W1969486090","https://openalex.org/W2001082470","https://openalex.org/W2009761865","https://openalex.org/W2048330531","https://openalex.org/W2069429561","https://openalex.org/W2098062695","https://openalex.org/W2107034620","https://openalex.org/W2120354757","https://openalex.org/W2122683976","https://openalex.org/W2122695597","https://openalex.org/W2124386111","https://openalex.org/W2158266063","https://openalex.org/W2158728425","https://openalex.org/W3146885639","https://openalex.org/W4237791300"],"related_works":["https://openalex.org/W4315588616","https://openalex.org/W4312773271","https://openalex.org/W4293734197","https://openalex.org/W4206967254","https://openalex.org/W2962686197","https://openalex.org/W2888805565","https://openalex.org/W2769501189","https://openalex.org/W2761847515","https://openalex.org/W2250993361","https://openalex.org/W2131689821"],"abstract_inverted_index":{"We":[0],"propose":[1],"a":[2,16,27,31],"Label-Related/Unrelated":[3],"Topic":[4],"Switching":[5],"Model":[6],"(LRU-TSM)":[7],"based":[8],"on":[9],"Latent":[10],"Dirichlet":[11],"Allocation":[12],"(LDA)":[13],"for":[14,100,108],"modeling":[15],"labeled":[17],"corpus.":[18],"In":[19],"this":[20],"model,":[21,71],"each":[22],"word":[23],"is":[24,80],"allocated":[25],"to":[26,68,78],"label-related":[28,61],"topic":[29],"or":[30,110],"label-unrelated":[32,40],"topic.":[33],"Label-related":[34],"topics":[35,41,54,64],"utilize":[36,42],"label":[37,101],"information,":[38],"and":[39,62,72,98],"the":[43,51,69,74,91],"framework":[44],"of":[45,53,76,96],"Bayesian":[46],"Nonparametrics,":[47],"which":[48,79],"can":[49],"estimate":[50],"number":[52],"in":[55,66,94],"posterior":[56],"distributions.":[57],"Our":[58],"model":[59,89,93],"handles":[60],"-unrelated":[63],"explicitly,":[65],"contrast":[67],"earlier":[70,92],"improves":[73],"performances":[75],"applications":[77],"applied.":[81],"Using":[82],"real-world":[83],"datasets,":[84],"we":[85],"show":[86],"that":[87,104],"our":[88],"outperforms":[90],"terms":[95],"perplexity":[97],"efficiency":[99],"prediction":[102],"tasks":[103],"involve":[105],"predicting":[106],"labels":[107],"documents":[109],"pictures":[111],"without":[112],"labels.":[113]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2011760429","counts_by_year":[{"year":2013,"cited_by_count":1}],"updated_date":"2025-01-17T01:49:10.892343","created_date":"2016-06-24"}