{"id":"https://openalex.org/W2996546273","doi":"https://doi.org/10.1109/acirs.2019.8935951","title":"Segmentation-based Knowledge Extraction from Chest X-ray Images","display_name":"Segmentation-based Knowledge Extraction from Chest X-ray Images","publication_year":2019,"publication_date":"2019-07-01","ids":{"openalex":"https://openalex.org/W2996546273","doi":"https://doi.org/10.1109/acirs.2019.8935951","mag":"2996546273"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/acirs.2019.8935951","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5063216952","display_name":"Ari Wibisono","orcid":"https://orcid.org/0000-0002-2652-3227"},"institutions":[{"id":"https://openalex.org/I29617571","display_name":"University of Indonesia","ror":"https://ror.org/0116zj450","country_code":"ID","type":"funder","lineage":["https://openalex.org/I29617571"]}],"countries":["ID"],"is_corresponding":false,"raw_author_name":"Ari Wibisono","raw_affiliation_strings":["Faculty of Computer Science, Universitas Indonesia, Depok, Indonesia"],"affiliations":[{"raw_affiliation_string":"Faculty of Computer Science, Universitas Indonesia, Depok, Indonesia","institution_ids":["https://openalex.org/I29617571"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5067896571","display_name":"Jihan Adibah","orcid":null},"institutions":[{"id":"https://openalex.org/I29617571","display_name":"University of Indonesia","ror":"https://ror.org/0116zj450","country_code":"ID","type":"funder","lineage":["https://openalex.org/I29617571"]}],"countries":["ID"],"is_corresponding":false,"raw_author_name":"Jihan Adibah","raw_affiliation_strings":["Faculty of Computer Science, Universitas Indonesia, Depok, Indonesia"],"affiliations":[{"raw_affiliation_string":"Faculty of Computer Science, Universitas Indonesia, Depok, Indonesia","institution_ids":["https://openalex.org/I29617571"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5041901625","display_name":"Faisal Satrio Priatmadji","orcid":null},"institutions":[{"id":"https://openalex.org/I29617571","display_name":"University of Indonesia","ror":"https://ror.org/0116zj450","country_code":"ID","type":"funder","lineage":["https://openalex.org/I29617571"]}],"countries":["ID"],"is_corresponding":false,"raw_author_name":"Faisal Satrio Priatmadji","raw_affiliation_strings":["Faculty of Computer Science, Universitas Indonesia, Depok, Indonesia"],"affiliations":[{"raw_affiliation_string":"Faculty of Computer Science, Universitas Indonesia, Depok, Indonesia","institution_ids":["https://openalex.org/I29617571"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5077532441","display_name":"Nabilah Zhafira Viderisa","orcid":null},"institutions":[{"id":"https://openalex.org/I29617571","display_name":"University of Indonesia","ror":"https://ror.org/0116zj450","country_code":"ID","type":"funder","lineage":["https://openalex.org/I29617571"]}],"countries":["ID"],"is_corresponding":false,"raw_author_name":"Nabilah Zhafira Viderisa","raw_affiliation_strings":["Faculty of Computer Science, Universitas Indonesia, Depok, Indonesia"],"affiliations":[{"raw_affiliation_string":"Faculty of Computer Science, Universitas Indonesia, Depok, Indonesia","institution_ids":["https://openalex.org/I29617571"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5050604231","display_name":"Aisyah Husna","orcid":null},"institutions":[{"id":"https://openalex.org/I29617571","display_name":"University of Indonesia","ror":"https://ror.org/0116zj450","country_code":"ID","type":"funder","lineage":["https://openalex.org/I29617571"]}],"countries":["ID"],"is_corresponding":false,"raw_author_name":"Aisyah Husna","raw_affiliation_strings":["Faculty of Computer Science, Universitas Indonesia, Depok, Indonesia"],"affiliations":[{"raw_affiliation_string":"Faculty of Computer Science, Universitas Indonesia, Depok, Indonesia","institution_ids":["https://openalex.org/I29617571"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5004862325","display_name":"Petrus Mursanto","orcid":"https://orcid.org/0000-0002-4831-4629"},"institutions":[{"id":"https://openalex.org/I29617571","display_name":"University of Indonesia","ror":"https://ror.org/0116zj450","country_code":"ID","type":"funder","lineage":["https://openalex.org/I29617571"]}],"countries":["ID"],"is_corresponding":false,"raw_author_name":"Petrus Mursanto","raw_affiliation_strings":["Faculty of Computer Science, Universitas Indonesia, Depok, Indonesia"],"affiliations":[{"raw_affiliation_string":"Faculty of Computer Science, Universitas Indonesia, Depok, Indonesia","institution_ids":["https://openalex.org/I29617571"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.344,"has_fulltext":false,"cited_by_count":2,"citation_normalized_percentile":{"value":0.599001,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":69,"max":74},"biblio":{"volume":null,"issue":null,"first_page":"225","last_page":"230"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11775","display_name":"COVID-19 diagnosis using AI","score":0.9998,"subfield":{"id":"https://openalex.org/subfields/2741","display_name":"Radiology, Nuclear Medicine and Imaging"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}},"topics":[{"id":"https://openalex.org/T11775","display_name":"COVID-19 diagnosis using AI","score":0.9998,"subfield":{"id":"https://openalex.org/subfields/2741","display_name":"Radiology, Nuclear Medicine and Imaging"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}},{"id":"https://openalex.org/T12422","display_name":"Radiomics and Machine Learning in Medical Imaging","score":0.9989,"subfield":{"id":"https://openalex.org/subfields/2741","display_name":"Radiology, Nuclear Medicine and Imaging"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}},{"id":"https://openalex.org/T10862","display_name":"AI in cancer detection","score":0.9989,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/contextual-image-classification","display_name":"Contextual image classification","score":0.43619677}],"concepts":[{"id":"https://openalex.org/C81363708","wikidata":"https://www.wikidata.org/wiki/Q17084460","display_name":"Convolutional neural network","level":2,"score":0.78664434},{"id":"https://openalex.org/C534262118","wikidata":"https://www.wikidata.org/wiki/Q177719","display_name":"Medical diagnosis","level":2,"score":0.76282096},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.75103164},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.75059164},{"id":"https://openalex.org/C89600930","wikidata":"https://www.wikidata.org/wiki/Q1423946","display_name":"Segmentation","level":2,"score":0.6667676},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.54826206},{"id":"https://openalex.org/C124504099","wikidata":"https://www.wikidata.org/wiki/Q56933","display_name":"Image segmentation","level":3,"score":0.54184306},{"id":"https://openalex.org/C52622490","wikidata":"https://www.wikidata.org/wiki/Q1026626","display_name":"Feature extraction","level":2,"score":0.5212748},{"id":"https://openalex.org/C143409427","wikidata":"https://www.wikidata.org/wiki/Q161238","display_name":"Magnetic resonance imaging","level":2,"score":0.4803187},{"id":"https://openalex.org/C75294576","wikidata":"https://www.wikidata.org/wiki/Q5165192","display_name":"Contextual image classification","level":3,"score":0.43619677},{"id":"https://openalex.org/C2780598303","wikidata":"https://www.wikidata.org/wiki/Q65921492","display_name":"Flexibility (engineering)","level":2,"score":0.41944498},{"id":"https://openalex.org/C108583219","wikidata":"https://www.wikidata.org/wiki/Q197536","display_name":"Deep learning","level":2,"score":0.41576728},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.411197},{"id":"https://openalex.org/C115961682","wikidata":"https://www.wikidata.org/wiki/Q860623","display_name":"Image (mathematics)","level":2,"score":0.34004462},{"id":"https://openalex.org/C31972630","wikidata":"https://www.wikidata.org/wiki/Q844240","display_name":"Computer vision","level":1,"score":0.33853978},{"id":"https://openalex.org/C126838900","wikidata":"https://www.wikidata.org/wiki/Q77604","display_name":"Radiology","level":1,"score":0.26442462},{"id":"https://openalex.org/C71924100","wikidata":"https://www.wikidata.org/wiki/Q11190","display_name":"Medicine","level":0,"score":0.15119004},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.094548106},{"id":"https://openalex.org/C105795698","wikidata":"https://www.wikidata.org/wiki/Q12483","display_name":"Statistics","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/acirs.2019.8935951","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"id":"https://metadata.un.org/sdg/4","score":0.48,"display_name":"Quality education"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":18,"referenced_works":["https://openalex.org/W2101234009","https://openalex.org/W2151460114","https://openalex.org/W2158698691","https://openalex.org/W2183341477","https://openalex.org/W2194775991","https://openalex.org/W2549514639","https://openalex.org/W2557738935","https://openalex.org/W2581082771","https://openalex.org/W2735058844","https://openalex.org/W2745999234","https://openalex.org/W2795964626","https://openalex.org/W2919115771","https://openalex.org/W2963446712","https://openalex.org/W2963967185","https://openalex.org/W2964081807","https://openalex.org/W2964350391","https://openalex.org/W3101156210","https://openalex.org/W4253920039"],"related_works":["https://openalex.org/W4360783045","https://openalex.org/W4249377076","https://openalex.org/W3176438653","https://openalex.org/W3167930666","https://openalex.org/W3014952856","https://openalex.org/W3010730661","https://openalex.org/W2963346891","https://openalex.org/W2952813363","https://openalex.org/W2770149305","https://openalex.org/W2565656575"],"abstract_inverted_index":{"Computer-aided":[0],"detection":[1],"applications":[2],"have":[3],"been":[4],"extensively":[5],"used":[6],"to":[7,29],"assist":[8],"physicians":[9,28],"in":[10],"clinical":[11],"diagnoses.":[12],"Extracted":[13],"information":[14],"from":[15,52,61],"X-ray,":[16],"positron":[17],"emission":[18],"tomography,":[19],"and":[20,26,37,82,108,113,122,157],"magnetic":[21],"resonance":[22],"images":[23,67,76,103],"enables":[24],"radiologists":[25],"other":[27],"identify":[30],"pathologies,":[31],"correlate":[32],"findings":[33],"with":[34,77,101,132],"the":[35,39,62,66,96,105,109,116],"symptoms,":[36],"determine":[38],"treatment":[40],"steps.":[41],"In":[42],"this":[43],"study,":[44],"we":[45],"proposed":[46],"an":[47],"automatic":[48],"knowledge":[49,58],"extraction":[50],"methodology":[51],"chest":[53],"X-ray":[54],"images.":[55],"The":[56],"extracted":[57],"is":[59],"obtained":[60],"segmented":[63,75,102],"sections":[64],"of":[65,120],"that":[68],"include":[69],"pathological":[70],"findings.":[71],"We":[72],"evaluated":[73],"these":[74],"a)":[78],"classical":[79],"machine":[80],"learning":[81],"b)":[83],"pretrained":[84,106,133],"convolutional":[85],"neural":[86],"network":[87],"(CNN)":[88],"models.":[89],"Evaluations":[90],"were":[91],"based":[92,150],"on":[93,151],"areas":[94],"under":[95],"receiver":[97],"operating":[98],"characteristic":[99],"(AUROC)":[100],"using":[104],"CNN":[107,134],"traditional":[110,137],"method":[111],"models,":[112],"they":[114],"produced":[115],"average":[117],"AUROC":[118,129],"scores":[119,130],"0.96":[121],"0.52,":[123],"respectively.":[124],"Traditional":[125],"methods":[126,138],"yielded":[127],"lower":[128],"compared":[131],"methods.":[135],"However,":[136],"may":[139],"still":[140],"be":[141],"considered":[142],"as":[143],"appropriate":[144],"solutions":[145],"for":[146],"disease":[147],"diagnoses":[148],"primarily":[149],"their":[152],"advantages":[153],"regarding":[154],"running":[155],"time":[156],"flexibility.":[158]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2996546273","counts_by_year":[{"year":2021,"cited_by_count":1},{"year":2020,"cited_by_count":1}],"updated_date":"2025-04-20T17:45:40.262954","created_date":"2019-12-26"}