{"id":"https://openalex.org/W4387350610","doi":"https://doi.org/10.1109/access.2023.3321861","title":"Predicting Agriculture Yields Based on Machine Learning Using Regression and Deep Learning","display_name":"Predicting Agriculture Yields Based on Machine Learning Using Regression and Deep Learning","publication_year":2023,"publication_date":"2023-01-01","ids":{"openalex":"https://openalex.org/W4387350610","doi":"https://doi.org/10.1109/access.2023.3321861"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1109/access.2023.3321861","pdf_url":"https://ieeexplore.ieee.org/ielx7/6287639/6514899/10271389.pdf","source":{"id":"https://openalex.org/S2485537415","display_name":"IEEE Access","issn_l":"2169-3536","issn":["2169-3536"],"is_oa":true,"is_in_doaj":true,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310319808","host_organization_name":"Institute of Electrical and Electronics Engineers","host_organization_lineage":["https://openalex.org/P4310319808"],"host_organization_lineage_names":["Institute of Electrical and Electronics Engineers"],"type":"journal"},"license":"cc-by-nc-nd","license_id":"https://openalex.org/licenses/cc-by-nc-nd","version":"publishedVersion","is_accepted":true,"is_published":true},"type":"article","type_crossref":"journal-article","indexed_in":["crossref"],"open_access":{"is_oa":true,"oa_status":"gold","oa_url":"https://ieeexplore.ieee.org/ielx7/6287639/6514899/10271389.pdf","any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5100613232","display_name":"Priyanka Sharma","orcid":"https://orcid.org/0000-0002-9503-1170"},"institutions":[{"id":"https://openalex.org/I4210145362","display_name":"Institute of Technology Management","ror":"https://ror.org/03c4qaa56","country_code":"IN","type":"facility","lineage":["https://openalex.org/I1340206300","https://openalex.org/I4210145362","https://openalex.org/I4210150591"]}],"countries":["IN"],"is_corresponding":false,"raw_author_name":"Priyanka Sharma","raw_affiliation_strings":["Department of Computer Science and Engineering, Swami Keshvanand Institute of Technology, Management and Gramothan, Jaipur, Rajasthan, India"],"affiliations":[{"raw_affiliation_string":"Department of Computer Science and Engineering, Swami Keshvanand Institute of Technology, Management and Gramothan, Jaipur, Rajasthan, India","institution_ids":["https://openalex.org/I4210145362"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5026191243","display_name":"Pankaj Dadheech","orcid":"https://orcid.org/0000-0001-5783-1989"},"institutions":[{"id":"https://openalex.org/I4210145362","display_name":"Institute of Technology Management","ror":"https://ror.org/03c4qaa56","country_code":"IN","type":"facility","lineage":["https://openalex.org/I1340206300","https://openalex.org/I4210145362","https://openalex.org/I4210150591"]}],"countries":["IN"],"is_corresponding":false,"raw_author_name":"Pankaj Dadheech","raw_affiliation_strings":["Department of Computer Science and Engineering, Swami Keshvanand Institute of Technology, Management and Gramothan, Jaipur, Rajasthan, India"],"affiliations":[{"raw_affiliation_string":"Department of Computer Science and Engineering, Swami Keshvanand Institute of Technology, Management and Gramothan, Jaipur, Rajasthan, India","institution_ids":["https://openalex.org/I4210145362"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5072569465","display_name":"Nagender Aneja","orcid":"https://orcid.org/0000-0003-4681-6411"},"institutions":[{"id":"https://openalex.org/I189462010","display_name":"Universiti Brunei Darussalam","ror":"https://ror.org/02qnf3n86","country_code":"BN","type":"funder","lineage":["https://openalex.org/I189462010"]}],"countries":["BN"],"is_corresponding":false,"raw_author_name":"Nagender Aneja","raw_affiliation_strings":["School of Digital Science, Univerisiti Brunei Darussalam, Gadong, BE, Brunei Darussalam"],"affiliations":[{"raw_affiliation_string":"School of Digital Science, Univerisiti Brunei Darussalam, Gadong, BE, Brunei Darussalam","institution_ids":["https://openalex.org/I189462010"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5039427686","display_name":"Sandhya Aneja","orcid":"https://orcid.org/0000-0003-2266-4951"},"institutions":[{"id":"https://openalex.org/I926137907","display_name":"Marist College","ror":"https://ror.org/04wx3x242","country_code":"US","type":"education","lineage":["https://openalex.org/I926137907"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Sandhya Aneja","raw_affiliation_strings":["School of Computer Science and Mathematics, Marist College, Poughkeepsie, NY, USA"],"affiliations":[{"raw_affiliation_string":"School of Computer Science and Mathematics, Marist College, Poughkeepsie, NY, USA","institution_ids":["https://openalex.org/I926137907"]}]}],"institution_assertions":[],"countries_distinct_count":3,"institutions_distinct_count":3,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":{"value":1850,"currency":"USD","value_usd":1850},"apc_paid":{"value":1850,"currency":"USD","value_usd":1850},"fwci":16.701,"has_fulltext":true,"fulltext_origin":"pdf","cited_by_count":54,"citation_normalized_percentile":{"value":0.999976,"is_in_top_1_percent":true,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":99,"max":100},"biblio":{"volume":"11","issue":null,"first_page":"111255","last_page":"111264"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10616","display_name":"Smart Agriculture and AI","score":0.9987,"subfield":{"id":"https://openalex.org/subfields/1110","display_name":"Plant Science"},"field":{"id":"https://openalex.org/fields/11","display_name":"Agricultural and Biological Sciences"},"domain":{"id":"https://openalex.org/domains/1","display_name":"Life Sciences"}},"topics":[{"id":"https://openalex.org/T10616","display_name":"Smart Agriculture and AI","score":0.9987,"subfield":{"id":"https://openalex.org/subfields/1110","display_name":"Plant Science"},"field":{"id":"https://openalex.org/fields/11","display_name":"Agricultural and Biological Sciences"},"domain":{"id":"https://openalex.org/domains/1","display_name":"Life Sciences"}},{"id":"https://openalex.org/T14319","display_name":"Currency Recognition and Detection","score":0.9595,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T13508","display_name":"Agricultural Economics and Practices","score":0.9427,"subfield":{"id":"https://openalex.org/subfields/1100","display_name":"General Agricultural and Biological Sciences"},"field":{"id":"https://openalex.org/fields/11","display_name":"Agricultural and Biological Sciences"},"domain":{"id":"https://openalex.org/domains/1","display_name":"Life Sciences"}}],"keywords":[],"concepts":[{"id":"https://openalex.org/C169258074","wikidata":"https://www.wikidata.org/wiki/Q245748","display_name":"Random forest","level":2,"score":0.70952725},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.6490355},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.59113467},{"id":"https://openalex.org/C139945424","wikidata":"https://www.wikidata.org/wiki/Q1940696","display_name":"Mean squared error","level":2,"score":0.57605624},{"id":"https://openalex.org/C108583219","wikidata":"https://www.wikidata.org/wiki/Q197536","display_name":"Deep learning","level":2,"score":0.5738321},{"id":"https://openalex.org/C84525736","wikidata":"https://www.wikidata.org/wiki/Q831366","display_name":"Decision tree","level":2,"score":0.5474612},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.52610356},{"id":"https://openalex.org/C118518473","wikidata":"https://www.wikidata.org/wiki/Q11451","display_name":"Agriculture","level":2,"score":0.50247455},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.5001929},{"id":"https://openalex.org/C126343540","wikidata":"https://www.wikidata.org/wiki/Q889514","display_name":"Crop yield","level":2,"score":0.4929371},{"id":"https://openalex.org/C81363708","wikidata":"https://www.wikidata.org/wiki/Q17084460","display_name":"Convolutional neural network","level":2,"score":0.48801294},{"id":"https://openalex.org/C88463610","wikidata":"https://www.wikidata.org/wiki/Q194118","display_name":"Agricultural engineering","level":1,"score":0.47323406},{"id":"https://openalex.org/C83546350","wikidata":"https://www.wikidata.org/wiki/Q1139051","display_name":"Regression","level":2,"score":0.46908963},{"id":"https://openalex.org/C152877465","wikidata":"https://www.wikidata.org/wiki/Q208042","display_name":"Regression analysis","level":2,"score":0.41296914},{"id":"https://openalex.org/C105795698","wikidata":"https://www.wikidata.org/wiki/Q12483","display_name":"Statistics","level":1,"score":0.39838177},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.2996679},{"id":"https://openalex.org/C6557445","wikidata":"https://www.wikidata.org/wiki/Q173113","display_name":"Agronomy","level":1,"score":0.119678676},{"id":"https://openalex.org/C205649164","wikidata":"https://www.wikidata.org/wiki/Q1071","display_name":"Geography","level":0,"score":0.11845505},{"id":"https://openalex.org/C127413603","wikidata":"https://www.wikidata.org/wiki/Q11023","display_name":"Engineering","level":0,"score":0.1158326},{"id":"https://openalex.org/C166957645","wikidata":"https://www.wikidata.org/wiki/Q23498","display_name":"Archaeology","level":1,"score":0.0},{"id":"https://openalex.org/C86803240","wikidata":"https://www.wikidata.org/wiki/Q420","display_name":"Biology","level":0,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":true,"landing_page_url":"https://doi.org/10.1109/access.2023.3321861","pdf_url":"https://ieeexplore.ieee.org/ielx7/6287639/6514899/10271389.pdf","source":{"id":"https://openalex.org/S2485537415","display_name":"IEEE Access","issn_l":"2169-3536","issn":["2169-3536"],"is_oa":true,"is_in_doaj":true,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310319808","host_organization_name":"Institute of Electrical and Electronics Engineers","host_organization_lineage":["https://openalex.org/P4310319808"],"host_organization_lineage_names":["Institute of Electrical and Electronics Engineers"],"type":"journal"},"license":"cc-by-nc-nd","license_id":"https://openalex.org/licenses/cc-by-nc-nd","version":"publishedVersion","is_accepted":true,"is_published":true}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1109/access.2023.3321861","pdf_url":"https://ieeexplore.ieee.org/ielx7/6287639/6514899/10271389.pdf","source":{"id":"https://openalex.org/S2485537415","display_name":"IEEE Access","issn_l":"2169-3536","issn":["2169-3536"],"is_oa":true,"is_in_doaj":true,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310319808","host_organization_name":"Institute of Electrical and Electronics Engineers","host_organization_lineage":["https://openalex.org/P4310319808"],"host_organization_lineage_names":["Institute of Electrical and Electronics Engineers"],"type":"journal"},"license":"cc-by-nc-nd","license_id":"https://openalex.org/licenses/cc-by-nc-nd","version":"publishedVersion","is_accepted":true,"is_published":true},"sustainable_development_goals":[{"id":"https://metadata.un.org/sdg/2","score":0.81,"display_name":"Zero hunger"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":24,"referenced_works":["https://openalex.org/W1983001233","https://openalex.org/W2194775991","https://openalex.org/W2550552207","https://openalex.org/W2786746338","https://openalex.org/W2918273972","https://openalex.org/W2929705482","https://openalex.org/W2949642792","https://openalex.org/W2951992834","https://openalex.org/W2969418413","https://openalex.org/W3098791889","https://openalex.org/W3118391463","https://openalex.org/W3134853016","https://openalex.org/W3139270378","https://openalex.org/W3142740975","https://openalex.org/W3167057282","https://openalex.org/W3174656993","https://openalex.org/W3203613371","https://openalex.org/W4224119994","https://openalex.org/W4225977726","https://openalex.org/W4285073039","https://openalex.org/W4285816694","https://openalex.org/W4308156322","https://openalex.org/W4385492051","https://openalex.org/W4399450307"],"related_works":["https://openalex.org/W4388550696","https://openalex.org/W4366990902","https://openalex.org/W4321636153","https://openalex.org/W4317732970","https://openalex.org/W4313289487","https://openalex.org/W4289884158","https://openalex.org/W4288365262","https://openalex.org/W2940614149","https://openalex.org/W2787485953","https://openalex.org/W2048488252"],"abstract_inverted_index":{"Agriculture":[0],"contributes":[1],"a":[2,82,95,233,262,268],"significant":[3],"amount":[4],"to":[5,11,23,30,43,63,85,109,115,119,131,135,158,221,274,294,302],"the":[6,12,40,45,68,86,122,138,144,166,222,278,288,298,305],"economy":[7],"of":[8,70,89,143,236,241,247,252,265,304],"India":[9],"due":[10],"dependence":[13],"on":[14,39],"human":[15],"beings":[16],"for":[17,33],"their":[18],"survival.":[19],"The":[20,229,254,282],"main":[21],"obstacle":[22],"food":[24],"security":[25],"is":[26,62,94,270],"population":[27],"expansion":[28],"leading":[29],"rising":[31],"demand":[32],"food.":[34],"Farmers":[35],"must":[36],"produce":[37,116,132],"more":[38],"same":[41],"land":[42],"boost":[44],"supply.":[46],"Through":[47],"crop":[48,65,156],"yield":[49,66,78,92,161,279],"prediction,":[50],"technology":[51],"can":[52,106,127],"assist":[53],"farmers":[54],"in":[55,121,137,155],"producing":[56],"more.":[57],"This":[58],"paper's":[59],"primary":[60],"goal":[61],"predict":[64],"utilizing":[67],"variables":[69],"rainfall,":[71],"crop,":[72],"meteorological":[73],"conditions,":[74],"area,":[75],"production,":[76],"and":[77,102,117,133,149,176,186,207,214,225,249],"that":[79,98,105],"have":[80,191],"posed":[81],"serious":[83],"threat":[84],"long-term":[87],"viability":[88],"agriculture.":[90],"Crop":[91],"prediction":[93],"decision-support":[96],"tool":[97],"uses":[99],"machine":[100,147,169,212],"learning":[101,104,148,151,170,180,213,216],"deep":[103,150,179,215],"be":[107],"used":[108],"make":[110],"decisions":[111],"about":[112],"which":[113,129],"crops":[114,130],"what":[118,134],"do":[120,136],"crop's":[123,139],"growing":[124,140],"season.":[125,141],"It":[126],"decide":[128],"Regardless":[142],"distracting":[145],"environment,":[146],"algorithms":[152],"are":[153,209,284],"utilized":[154],"selection":[157],"reduce":[159],"agricultural":[160,167],"output":[162],"losses.":[163],"To":[164],"estimate":[165],"yield,":[168],"techniques:":[171],"decision":[172],"tree,":[173],"random":[174,223,230],"forest,":[175],"XGBoost":[177],"regression;":[178],"techniques":[181],"-":[182],"convolutional":[183,226,255],"neural":[184,227,256],"network":[185,190,257],"long-short":[187],"term":[188],"memory":[189],"been":[192,259],"used.":[193],"Accuracy,":[194],"root":[195,243,289],"mean":[196,199,202,238,244,290],"square":[197,200,245,291],"error,":[198,201,204],"absolute":[203,239],"standard":[205,250],"deviation,":[206],"losses":[208],"compared.":[210],"Other":[211],"methods":[217],"fall":[218],"short":[219],"compared":[220,273],"forest":[224,231],"network.":[228],"has":[232,258],"maximum":[234],"accuracy":[235],"98.96%,":[237],"error":[240,246,292],"1.97,":[242],"2.45,":[248],"deviation":[251],"1.23.":[253],"evaluated":[260],"with":[261],"minimum":[263],"loss":[264],"0.00060.":[266],"Consequently,":[267],"model":[269],"developed":[271],"that,":[272],"other":[275,306],"algorithms,":[276],"predicts":[277],"quite":[280],"well.":[281],"findings":[283],"then":[285],"analyzed":[286],"using":[287],"metric":[293],"understand":[295],"better":[296],"how":[297],"model's":[299],"errors":[300],"compare":[301],"those":[303],"methods.":[307]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4387350610","counts_by_year":[{"year":2025,"cited_by_count":6},{"year":2024,"cited_by_count":43},{"year":2023,"cited_by_count":5}],"updated_date":"2025-04-07T02:20:20.715404","created_date":"2023-10-05"}