{"id":"https://openalex.org/W4387247659","doi":"https://doi.org/10.1109/access.2023.3321428","title":"A Deep Learning Framework for the Classification of Brazilian Coins","display_name":"A Deep Learning Framework for the Classification of Brazilian Coins","publication_year":2023,"publication_date":"2023-01-01","ids":{"openalex":"https://openalex.org/W4387247659","doi":"https://doi.org/10.1109/access.2023.3321428"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1109/access.2023.3321428","pdf_url":"https://ieeexplore.ieee.org/ielx7/6287639/6514899/10268931.pdf","source":{"id":"https://openalex.org/S2485537415","display_name":"IEEE Access","issn_l":"2169-3536","issn":["2169-3536"],"is_oa":true,"is_in_doaj":true,"is_core":true,"host_organization":"https://openalex.org/P4310319808","host_organization_name":"Institute of Electrical and Electronics Engineers","host_organization_lineage":["https://openalex.org/P4310319808"],"host_organization_lineage_names":["Institute of Electrical and Electronics Engineers"],"type":"journal"},"license":"cc-by-nc-nd","license_id":"https://openalex.org/licenses/cc-by-nc-nd","version":"publishedVersion","is_accepted":true,"is_published":true},"type":"article","type_crossref":"journal-article","indexed_in":["crossref"],"open_access":{"is_oa":true,"oa_status":"gold","oa_url":"https://ieeexplore.ieee.org/ielx7/6287639/6514899/10268931.pdf","any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5086154334","display_name":"Debabrata Swain","orcid":"https://orcid.org/0000-0001-7775-3244"},"institutions":[{"id":"https://openalex.org/I33586908","display_name":"Pandit Deendayal Petroleum University","ror":"https://ror.org/02nsv5p42","country_code":"IN","type":"education","lineage":["https://openalex.org/I33586908"]}],"countries":["IN"],"is_corresponding":false,"raw_author_name":"Debabrata Swain","raw_affiliation_strings":["Department of Computer Science and Engineering, Pandit Deendayal Energy University, Gandhinagar, India"],"affiliations":[{"raw_affiliation_string":"Department of Computer Science and Engineering, Pandit Deendayal Energy University, Gandhinagar, India","institution_ids":["https://openalex.org/I33586908"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5113013366","display_name":"Viral Rupapara","orcid":null},"institutions":[{"id":"https://openalex.org/I33586908","display_name":"Pandit Deendayal Petroleum University","ror":"https://ror.org/02nsv5p42","country_code":"IN","type":"education","lineage":["https://openalex.org/I33586908"]}],"countries":["IN"],"is_corresponding":false,"raw_author_name":"Viral Rupapara","raw_affiliation_strings":["Department of Computer Science and Engineering, Pandit Deendayal Energy University, Gandhinagar, India"],"affiliations":[{"raw_affiliation_string":"Department of Computer Science and Engineering, Pandit Deendayal Energy University, Gandhinagar, India","institution_ids":["https://openalex.org/I33586908"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5006598494","display_name":"Amro A. Nour","orcid":"https://orcid.org/0000-0003-3479-8340"},"institutions":[{"id":"https://openalex.org/I75535952","display_name":"American University of Kuwait","ror":"https://ror.org/00w73cg32","country_code":"KW","type":"education","lineage":["https://openalex.org/I75535952"]}],"countries":["KW"],"is_corresponding":false,"raw_author_name":"Amro Nour","raw_affiliation_strings":["College of Engineering and Applied Sciences, American University of Kuwait, Salmiya, Kuwait"],"affiliations":[{"raw_affiliation_string":"College of Engineering and Applied Sciences, American University of Kuwait, Salmiya, Kuwait","institution_ids":["https://openalex.org/I75535952"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5062662531","display_name":"Santosh Kumar Satapathy","orcid":"https://orcid.org/0000-0001-7243-1203"},"institutions":[{"id":"https://openalex.org/I33586908","display_name":"Pandit Deendayal Petroleum University","ror":"https://ror.org/02nsv5p42","country_code":"IN","type":"education","lineage":["https://openalex.org/I33586908"]}],"countries":["IN"],"is_corresponding":false,"raw_author_name":"Santosh Satapathy","raw_affiliation_strings":["Department of Information and Communication Technology, Pandit Deendayal Energy University, Gandhinagar, India"],"affiliations":[{"raw_affiliation_string":"Department of Information and Communication Technology, Pandit Deendayal Energy University, Gandhinagar, India","institution_ids":["https://openalex.org/I33586908"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5031377837","display_name":"Biswaranjan Acharya","orcid":"https://orcid.org/0000-0002-6506-9207"},"institutions":[{"id":"https://openalex.org/I3132999081","display_name":"Marwadi University","ror":"https://ror.org/030dn1812","country_code":"IN","type":"education","lineage":["https://openalex.org/I3132999081"]}],"countries":["IN"],"is_corresponding":false,"raw_author_name":"Biswaranjan Acharya","raw_affiliation_strings":["Department of Computer Engineering-AI & Big Data Analytics, Marwadi University, Gujarat, Rajkot, India"],"affiliations":[{"raw_affiliation_string":"Department of Computer Engineering-AI & Big Data Analytics, Marwadi University, Gujarat, Rajkot, India","institution_ids":["https://openalex.org/I3132999081"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5072010475","display_name":"Shakti Mishra","orcid":"https://orcid.org/0000-0002-5961-3114"},"institutions":[{"id":"https://openalex.org/I33586908","display_name":"Pandit Deendayal Petroleum University","ror":"https://ror.org/02nsv5p42","country_code":"IN","type":"education","lineage":["https://openalex.org/I33586908"]}],"countries":["IN"],"is_corresponding":false,"raw_author_name":"Shakti Mishra","raw_affiliation_strings":["Department of Computer Science and Engineering, Pandit Deendayal Energy University, Gandhinagar, India"],"affiliations":[{"raw_affiliation_string":"Department of Computer Science and Engineering, Pandit Deendayal Energy University, Gandhinagar, India","institution_ids":["https://openalex.org/I33586908"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5026529766","display_name":"Ali Bostani","orcid":"https://orcid.org/0000-0002-7922-9857"},"institutions":[{"id":"https://openalex.org/I75535952","display_name":"American University of Kuwait","ror":"https://ror.org/00w73cg32","country_code":"KW","type":"education","lineage":["https://openalex.org/I75535952"]}],"countries":["KW"],"is_corresponding":false,"raw_author_name":"Ali Bostani","raw_affiliation_strings":["College of Engineering and Applied Sciences, American University of Kuwait, Salmiya, Kuwait"],"affiliations":[{"raw_affiliation_string":"College of Engineering and Applied Sciences, American University of Kuwait, Salmiya, Kuwait","institution_ids":["https://openalex.org/I75535952"]}]}],"institution_assertions":[],"countries_distinct_count":2,"institutions_distinct_count":3,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":{"value":1850,"currency":"USD","value_usd":1850,"provenance":"doaj"},"apc_paid":{"value":1850,"currency":"USD","value_usd":1850,"provenance":"doaj"},"fwci":1.627,"has_fulltext":true,"fulltext_origin":"pdf","cited_by_count":5,"citation_normalized_percentile":{"value":0.99996,"is_in_top_1_percent":true,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":91,"max":93},"biblio":{"volume":"11","issue":null,"first_page":"109448","last_page":"109461"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T14319","display_name":"Currency Recognition and Detection","score":1.0,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T14319","display_name":"Currency Recognition and Detection","score":1.0,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/currency-recognition","display_name":"Currency Recognition","score":0.580926},{"id":"https://openalex.org/keywords/discriminative-model","display_name":"Discriminative model","score":0.57935953},{"id":"https://openalex.org/keywords/banknote-recognition","display_name":"Banknote Recognition","score":0.55217},{"id":"https://openalex.org/keywords/feature","display_name":"Feature (linguistics)","score":0.5412372},{"id":"https://openalex.org/keywords/coin-classification","display_name":"Coin Classification","score":0.532272},{"id":"https://openalex.org/keywords/transfer-of-learning","display_name":"Transfer of learning","score":0.45245677},{"id":"https://openalex.org/keywords/extractor","display_name":"Extractor","score":0.44874024},{"id":"https://openalex.org/keywords/contextual-image-classification","display_name":"Contextual image classification","score":0.43645245},{"id":"https://openalex.org/keywords/feature-learning","display_name":"Feature learning","score":0.41038725}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.8299694},{"id":"https://openalex.org/C108583219","wikidata":"https://www.wikidata.org/wiki/Q197536","display_name":"Deep learning","level":2,"score":0.69115585},{"id":"https://openalex.org/C81363708","wikidata":"https://www.wikidata.org/wiki/Q17084460","display_name":"Convolutional neural network","level":2,"score":0.68318546},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.6646851},{"id":"https://openalex.org/C97931131","wikidata":"https://www.wikidata.org/wiki/Q5282087","display_name":"Discriminative model","level":2,"score":0.57935953},{"id":"https://openalex.org/C2776401178","wikidata":"https://www.wikidata.org/wiki/Q12050496","display_name":"Feature (linguistics)","level":2,"score":0.5412372},{"id":"https://openalex.org/C52622490","wikidata":"https://www.wikidata.org/wiki/Q1026626","display_name":"Feature extraction","level":2,"score":0.48254102},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.47596997},{"id":"https://openalex.org/C150899416","wikidata":"https://www.wikidata.org/wiki/Q1820378","display_name":"Transfer of learning","level":2,"score":0.45245677},{"id":"https://openalex.org/C117978034","wikidata":"https://www.wikidata.org/wiki/Q5422192","display_name":"Extractor","level":2,"score":0.44874024},{"id":"https://openalex.org/C75294576","wikidata":"https://www.wikidata.org/wiki/Q5165192","display_name":"Contextual image classification","level":3,"score":0.43645245},{"id":"https://openalex.org/C59404180","wikidata":"https://www.wikidata.org/wiki/Q17013334","display_name":"Feature learning","level":2,"score":0.41038725},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.37392807},{"id":"https://openalex.org/C115961682","wikidata":"https://www.wikidata.org/wiki/Q860623","display_name":"Image (mathematics)","level":2,"score":0.2557664},{"id":"https://openalex.org/C138885662","wikidata":"https://www.wikidata.org/wiki/Q5891","display_name":"Philosophy","level":0,"score":0.0},{"id":"https://openalex.org/C41895202","wikidata":"https://www.wikidata.org/wiki/Q8162","display_name":"Linguistics","level":1,"score":0.0},{"id":"https://openalex.org/C21880701","wikidata":"https://www.wikidata.org/wiki/Q2144042","display_name":"Process engineering","level":1,"score":0.0},{"id":"https://openalex.org/C127413603","wikidata":"https://www.wikidata.org/wiki/Q11023","display_name":"Engineering","level":0,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":true,"landing_page_url":"https://doi.org/10.1109/access.2023.3321428","pdf_url":"https://ieeexplore.ieee.org/ielx7/6287639/6514899/10268931.pdf","source":{"id":"https://openalex.org/S2485537415","display_name":"IEEE Access","issn_l":"2169-3536","issn":["2169-3536"],"is_oa":true,"is_in_doaj":true,"is_core":true,"host_organization":"https://openalex.org/P4310319808","host_organization_name":"Institute of Electrical and Electronics Engineers","host_organization_lineage":["https://openalex.org/P4310319808"],"host_organization_lineage_names":["Institute of Electrical and Electronics Engineers"],"type":"journal"},"license":"cc-by-nc-nd","license_id":"https://openalex.org/licenses/cc-by-nc-nd","version":"publishedVersion","is_accepted":true,"is_published":true}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1109/access.2023.3321428","pdf_url":"https://ieeexplore.ieee.org/ielx7/6287639/6514899/10268931.pdf","source":{"id":"https://openalex.org/S2485537415","display_name":"IEEE Access","issn_l":"2169-3536","issn":["2169-3536"],"is_oa":true,"is_in_doaj":true,"is_core":true,"host_organization":"https://openalex.org/P4310319808","host_organization_name":"Institute of Electrical and Electronics Engineers","host_organization_lineage":["https://openalex.org/P4310319808"],"host_organization_lineage_names":["Institute of Electrical and Electronics Engineers"],"type":"journal"},"license":"cc-by-nc-nd","license_id":"https://openalex.org/licenses/cc-by-nc-nd","version":"publishedVersion","is_accepted":true,"is_published":true},"sustainable_development_goals":[{"id":"https://metadata.un.org/sdg/10","display_name":"Reduced inequalities","score":0.48},{"id":"https://metadata.un.org/sdg/16","display_name":"Peace, justice, and strong institutions","score":0.42}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":36,"referenced_works":["https://openalex.org/W1527469295","https://openalex.org/W1584308190","https://openalex.org/W1758892812","https://openalex.org/W1946204979","https://openalex.org/W1978444637","https://openalex.org/W2055081138","https://openalex.org/W2101007147","https://openalex.org/W2108972183","https://openalex.org/W2116873850","https://openalex.org/W2162598338","https://openalex.org/W2307425316","https://openalex.org/W2609302968","https://openalex.org/W2767369807","https://openalex.org/W2900591313","https://openalex.org/W2900744972","https://openalex.org/W2900783631","https://openalex.org/W2935821188","https://openalex.org/W2949486932","https://openalex.org/W295909711","https://openalex.org/W2963698657","https://openalex.org/W2967732991","https://openalex.org/W3003395231","https://openalex.org/W3006821749","https://openalex.org/W3007279825","https://openalex.org/W3115553521","https://openalex.org/W3134182560","https://openalex.org/W3135646433","https://openalex.org/W3154711534","https://openalex.org/W3206717949","https://openalex.org/W3209199607","https://openalex.org/W3213321795","https://openalex.org/W4220764272","https://openalex.org/W4307957701","https://openalex.org/W4353029161","https://openalex.org/W4364376158","https://openalex.org/W4384081274"],"related_works":["https://openalex.org/W4388405611","https://openalex.org/W4295705264","https://openalex.org/W3208297503","https://openalex.org/W3176438653","https://openalex.org/W3119773509","https://openalex.org/W2964117661","https://openalex.org/W2889153461","https://openalex.org/W2761785940","https://openalex.org/W2619127353","https://openalex.org/W2129933262"],"abstract_inverted_index":{"In":[0,252],"this":[1],"quickly":[2],"developing":[3],"world,":[4],"automatic":[5],"currency":[6,49,79,153],"identification":[7],"and":[8,19,26,51,67,95,110,155,173,181,225,231,242,262,287],"recognition":[9,40,80],"are":[10,82],"crucial":[11],"tasks.":[12],"Several":[13],"financial":[14],"institutions,":[15],"such":[16,22,91],"as":[17,23,92],"banks":[18],"hardware-based":[20],"devices":[21],"vending":[24,47],"machines":[25],"slot":[27],"machines,":[28,48],"play":[29],"an":[30,184],"essential":[31,42],"role":[32],"in":[33,43,64,179,249],"all":[34],"monetary":[35],"unification":[36],"fields.":[37],"Accurate":[38],"coin":[39,164,171,193],"is":[41],"various":[44,221],"contexts,":[45],"including":[46,62],"exchange,":[50],"archaeological":[52],"research.":[53],"However,":[54],"the":[55,77,85,89,98,152,192,204,301],"distinctive":[56],"visual":[57,285],"characteristics":[58],"of":[59,76,88,217,298,303],"Brazilian":[60,122,218,267,304],"coins,":[61,219],"variations":[63,178],"size,":[65],"color,":[66,108],"design,":[68],"pose":[69],"significant":[70],"challenges":[71],"for":[72,163,265,277,300],"automated":[73],"classification.":[74,165],"Most":[75],"existing":[78],"systems":[81],"based":[83],"on":[84,104],"physical":[86],"properties":[87,106],"currencies,":[90],"length,":[93],"breadth,":[94],"mass.":[96],"At":[97],"same":[99],"time,":[100],"image-based":[101],"methods":[102],"rely":[103],"other":[105,281],"like":[107],"shape,":[109],"edge.":[111],"This":[112],"paper":[113],"presents":[114],"a":[115,141,160,167,214,260,274,295],"novel":[116],"deep-learning":[117],"framework":[118,128,158,258],"tailored":[119],"to":[120,135,150,176,202,227],"classify":[121],"coins.":[123,268,305],"Our":[124,157],"proposed":[125,255,291],"deep":[126,256],"learning":[127,198,257],"leverages":[129],"state-of-the-art":[130],"convolutional":[131],"neural":[132],"networks":[133],"(CNNs)":[134],"address":[136],"these":[137],"challenges.":[138,289],"We":[139,195,212],"introduce":[140],"Repetitive":[142],"Feature":[143],"Extractor":[144],"Convolution":[145],"Neural":[146],"Network":[147],"(RFE-CNN)":[148],"model":[149,229,247,292],"recognize":[151],"faster":[154],"accurately.":[156],"employs":[159],"multi-stage":[161],"approach":[162],"First,":[166],"pre-processing":[168],"module":[169],"handles":[170],"localization":[172],"image":[174],"enhancement":[175],"mitigate":[177],"lighting":[180,241],"background.":[182],"Next,":[183],"RFE-CNN-based":[185],"feature":[186],"extractor":[187],"extracts":[188],"discriminative":[189],"features":[190],"from":[191,199,280],"images.":[194],"explore":[196],"transfer":[197],"pre-trained":[200],"models":[201],"enhance":[203],"model's":[205],"generalization":[206],"capability,":[207],"given":[208],"limited":[209],"data":[210],"availability.":[211],"used":[213],"comprehensive":[215],"dataset":[216,234],"comprising":[220],"denominations,":[222],"minting":[223],"years,":[224],"conditions,":[226,244],"facilitate":[228],"training":[230],"evaluation.":[232],"The":[233,269,290],"includes":[235],"high-resolution":[236],"images":[237],"captured":[238],"under":[239],"diverse":[240],"environmental":[243],"ensuring":[245],"robust":[246],"performance":[248],"real-world":[250],"scenarios.":[251],"conclusion,":[253],"our":[254],"offers":[259],"powerful":[261],"efficient":[263],"solution":[264],"classifying":[266],"framework's":[270],"adaptability":[271],"makes":[272],"it":[273],"valuable":[275],"tool":[276],"recognizing":[278],"coins":[279],"regions":[282],"with":[283],"similar":[284],"diversity":[286],"variability":[288],"has":[293],"achieved":[294],"classification":[296,302],"accuracy":[297],"98.34%":[299]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4387247659","counts_by_year":[{"year":2024,"cited_by_count":4},{"year":2023,"cited_by_count":1}],"updated_date":"2024-12-05T04:27:42.218618","created_date":"2023-10-03"}