{"id":"https://openalex.org/W4385627173","doi":"https://doi.org/10.1109/access.2023.3302692","title":"DANS: Deep Attention Network for Single Image Super-Resolution","display_name":"DANS: Deep Attention Network for Single Image Super-Resolution","publication_year":2023,"publication_date":"2023-01-01","ids":{"openalex":"https://openalex.org/W4385627173","doi":"https://doi.org/10.1109/access.2023.3302692"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1109/access.2023.3302692","pdf_url":"https://ieeexplore.ieee.org/ielx7/6287639/6514899/10210219.pdf","source":{"id":"https://openalex.org/S2485537415","display_name":"IEEE Access","issn_l":"2169-3536","issn":["2169-3536"],"is_oa":true,"is_in_doaj":true,"is_core":true,"host_organization":"https://openalex.org/P4310319808","host_organization_name":"Institute of Electrical and Electronics Engineers","host_organization_lineage":["https://openalex.org/P4310319808"],"host_organization_lineage_names":["Institute of Electrical and Electronics Engineers"],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},"type":"article","type_crossref":"journal-article","indexed_in":["crossref"],"open_access":{"is_oa":true,"oa_status":"gold","oa_url":"https://ieeexplore.ieee.org/ielx7/6287639/6514899/10210219.pdf","any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5092836242","display_name":"Jagrati Talreja","orcid":"https://orcid.org/0009-0009-4652-4196"},"institutions":[{"id":"https://openalex.org/I158708052","display_name":"Chulalongkorn University","ror":"https://ror.org/028wp3y58","country_code":"TH","type":"education","lineage":["https://openalex.org/I158708052"]}],"countries":["TH"],"is_corresponding":false,"raw_author_name":"Jagrati Talreja","raw_affiliation_strings":["Department of Electrical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, Thailand"],"affiliations":[{"raw_affiliation_string":"Department of Electrical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, Thailand","institution_ids":["https://openalex.org/I158708052"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5069698375","display_name":"Supavadee Aramvith","orcid":"https://orcid.org/0000-0001-9840-3171"},"institutions":[{"id":"https://openalex.org/I158708052","display_name":"Chulalongkorn University","ror":"https://ror.org/028wp3y58","country_code":"TH","type":"education","lineage":["https://openalex.org/I158708052"]}],"countries":["TH"],"is_corresponding":false,"raw_author_name":"Supavadee Aramvith","raw_affiliation_strings":["Multimedia Data Analytics and Processing Unit, Department of Electrical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, Thailand"],"affiliations":[{"raw_affiliation_string":"Multimedia Data Analytics and Processing Unit, Department of Electrical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, Thailand","institution_ids":["https://openalex.org/I158708052"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5061693379","display_name":"Takao Onoye","orcid":"https://orcid.org/0000-0002-1894-2448"},"institutions":[{"id":"https://openalex.org/I98285908","display_name":"Osaka University","ror":"https://ror.org/035t8zc32","country_code":"JP","type":"education","lineage":["https://openalex.org/I98285908"]}],"countries":["JP"],"is_corresponding":false,"raw_author_name":"Takao Onoye","raw_affiliation_strings":["Graduate School of Information Science and Technology, Osaka University, 1-5 Yamada-Oka, Suita, Japan"],"affiliations":[{"raw_affiliation_string":"Graduate School of Information Science and Technology, Osaka University, 1-5 Yamada-Oka, Suita, Japan","institution_ids":["https://openalex.org/I98285908"]}]}],"institution_assertions":[],"countries_distinct_count":2,"institutions_distinct_count":2,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":{"value":1850,"currency":"USD","value_usd":1850,"provenance":"doaj"},"apc_paid":{"value":1850,"currency":"USD","value_usd":1850,"provenance":"doaj"},"fwci":0.822,"has_fulltext":true,"fulltext_origin":"pdf","cited_by_count":3,"citation_normalized_percentile":{"value":0.556134,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":84,"max":88},"biblio":{"volume":"11","issue":null,"first_page":"84379","last_page":"84397"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11105","display_name":"Advanced Image Processing Techniques","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11105","display_name":"Advanced Image Processing Techniques","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10688","display_name":"Image and Signal Denoising Methods","score":0.9952,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T13114","display_name":"Image Processing Techniques and Applications","score":0.9902,"subfield":{"id":"https://openalex.org/subfields/2214","display_name":"Media Technology"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/leverage","display_name":"Leverage (statistics)","score":0.71771413},{"id":"https://openalex.org/keywords/abstraction","display_name":"Abstraction","score":0.43082377}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.8321676},{"id":"https://openalex.org/C153083717","wikidata":"https://www.wikidata.org/wiki/Q6535263","display_name":"Leverage (statistics)","level":2,"score":0.71771413},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.6199976},{"id":"https://openalex.org/C118505674","wikidata":"https://www.wikidata.org/wiki/Q42586063","display_name":"Encoder","level":2,"score":0.5132084},{"id":"https://openalex.org/C2779343474","wikidata":"https://www.wikidata.org/wiki/Q3109175","display_name":"Context (archaeology)","level":2,"score":0.48127788},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.4639705},{"id":"https://openalex.org/C205372480","wikidata":"https://www.wikidata.org/wiki/Q210521","display_name":"Image resolution","level":2,"score":0.44610587},{"id":"https://openalex.org/C124304363","wikidata":"https://www.wikidata.org/wiki/Q673661","display_name":"Abstraction","level":2,"score":0.43082377},{"id":"https://openalex.org/C31972630","wikidata":"https://www.wikidata.org/wiki/Q844240","display_name":"Computer vision","level":1,"score":0.36393893},{"id":"https://openalex.org/C151730666","wikidata":"https://www.wikidata.org/wiki/Q7205","display_name":"Paleontology","level":1,"score":0.0},{"id":"https://openalex.org/C138885662","wikidata":"https://www.wikidata.org/wiki/Q5891","display_name":"Philosophy","level":0,"score":0.0},{"id":"https://openalex.org/C111472728","wikidata":"https://www.wikidata.org/wiki/Q9471","display_name":"Epistemology","level":1,"score":0.0},{"id":"https://openalex.org/C86803240","wikidata":"https://www.wikidata.org/wiki/Q420","display_name":"Biology","level":0,"score":0.0},{"id":"https://openalex.org/C111919701","wikidata":"https://www.wikidata.org/wiki/Q9135","display_name":"Operating system","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":true,"landing_page_url":"https://doi.org/10.1109/access.2023.3302692","pdf_url":"https://ieeexplore.ieee.org/ielx7/6287639/6514899/10210219.pdf","source":{"id":"https://openalex.org/S2485537415","display_name":"IEEE Access","issn_l":"2169-3536","issn":["2169-3536"],"is_oa":true,"is_in_doaj":true,"is_core":true,"host_organization":"https://openalex.org/P4310319808","host_organization_name":"Institute of Electrical and Electronics Engineers","host_organization_lineage":["https://openalex.org/P4310319808"],"host_organization_lineage_names":["Institute of Electrical and Electronics Engineers"],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1109/access.2023.3302692","pdf_url":"https://ieeexplore.ieee.org/ielx7/6287639/6514899/10210219.pdf","source":{"id":"https://openalex.org/S2485537415","display_name":"IEEE Access","issn_l":"2169-3536","issn":["2169-3536"],"is_oa":true,"is_in_doaj":true,"is_core":true,"host_organization":"https://openalex.org/P4310319808","host_organization_name":"Institute of Electrical and Electronics Engineers","host_organization_lineage":["https://openalex.org/P4310319808"],"host_organization_lineage_names":["Institute of Electrical and Electronics Engineers"],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},"sustainable_development_goals":[],"grants":[{"funder":"https://openalex.org/F4320321557","funder_display_name":"Chulalongkorn University","award_id":"the Second Century Fund (C2F)"}],"datasets":[],"versions":[],"referenced_works_count":81,"referenced_works":["https://openalex.org/W1565402342","https://openalex.org/W1677182931","https://openalex.org/W1791560514","https://openalex.org/W1885185971","https://openalex.org/W1896424170","https://openalex.org/W1901129140","https://openalex.org/W1919542679","https://openalex.org/W1930824406","https://openalex.org/W1978749115","https://openalex.org/W1985806826","https://openalex.org/W2003921122","https://openalex.org/W2016482162","https://openalex.org/W2047710600","https://openalex.org/W2047920195","https://openalex.org/W2048695508","https://openalex.org/W2097117768","https://openalex.org/W2118963448","https://openalex.org/W2121058967","https://openalex.org/W2121927366","https://openalex.org/W2142412278","https://openalex.org/W2149669120","https://openalex.org/W2157494358","https://openalex.org/W2161516371","https://openalex.org/W2214802144","https://openalex.org/W2242218935","https://openalex.org/W2250093075","https://openalex.org/W2503339013","https://openalex.org/W2548960858","https://openalex.org/W2604439412","https://openalex.org/W2607041014","https://openalex.org/W2613155248","https://openalex.org/W2741137940","https://openalex.org/W2741196023","https://openalex.org/W2747898905","https://openalex.org/W2764207251","https://openalex.org/W2776107444","https://openalex.org/W2780544323","https://openalex.org/W2795024892","https://openalex.org/W2866634454","https://openalex.org/W2895240252","https://openalex.org/W2895598217","https://openalex.org/W2902647532","https://openalex.org/W2914107945","https://openalex.org/W2935564801","https://openalex.org/W2950217418","https://openalex.org/W2954930822","https://openalex.org/W2962595906","https://openalex.org/W2963073614","https://openalex.org/W2963091558","https://openalex.org/W2963372104","https://openalex.org/W2963470893","https://openalex.org/W2963610452","https://openalex.org/W2963620158","https://openalex.org/W2963645458","https://openalex.org/W2963676087","https://openalex.org/W2963729050","https://openalex.org/W2964101377","https://openalex.org/W2964125708","https://openalex.org/W2964277374","https://openalex.org/W2968222299","https://openalex.org/W2974995978","https://openalex.org/W2976718572","https://openalex.org/W2980087356","https://openalex.org/W3003708426","https://openalex.org/W3013497725","https://openalex.org/W3013529009","https://openalex.org/W3033197276","https://openalex.org/W3034247386","https://openalex.org/W3035280441","https://openalex.org/W3083579885","https://openalex.org/W3091619240","https://openalex.org/W3096739052","https://openalex.org/W3101659800","https://openalex.org/W3168709512","https://openalex.org/W3174531399","https://openalex.org/W3207918547","https://openalex.org/W4225576932","https://openalex.org/W4285133379","https://openalex.org/W4327955583","https://openalex.org/W4379184258","https://openalex.org/W4382393357"],"related_works":["https://openalex.org/W4390516098","https://openalex.org/W4313163053","https://openalex.org/W4300973204","https://openalex.org/W4284884309","https://openalex.org/W4243842598","https://openalex.org/W3045811229","https://openalex.org/W2908749798","https://openalex.org/W2181948922","https://openalex.org/W2045155990","https://openalex.org/W1483408780"],"abstract_inverted_index":{"The":[0,18,56],"current":[1],"advancements":[2],"in":[3],"image":[4,154],"super-resolution":[5],"have":[6],"explored":[7],"different":[8,95],"attention":[9,28,62],"mechanisms":[10,29],"to":[11,23,30,73,111,119],"achieve":[12],"better":[13],"quantitative":[14,134],"and":[15,51,77,150],"perceptual":[16],"results.":[17],"critical":[19],"challenge":[20],"recently":[21],"is":[22],"utilize":[24],"the":[25,59,64,89,98,109],"potential":[26],"of":[27,66,100,117],"reconstruct":[31],"high-resolution":[32,153],"images":[33],"from":[34],"their":[35],"low-resolution":[36],"counterparts.":[37],"This":[38],"research":[39],"proposes":[40],"a":[41,52],"novel":[42],"method":[43],"that":[44,128],"combines":[45],"inception":[46,106],"blocks,":[47],"non-local":[48,60],"sparse":[49,61],"attention,":[50],"U-Net":[53,69],"network":[54,57,90],"architecture.":[55],"incorporates":[58],"on":[63],"backbone":[65],"symmetric":[67],"encoder-decoder":[68],"structure,":[70],"which":[71],"helps":[72],"identify":[74],"long-range":[75],"dependencies":[76],"exploits":[78],"contextual":[79],"information":[80,113,147],"while":[81],"preserving":[82],"global":[83],"context.":[84],"By":[85],"incorporating":[86],"skip":[87],"connections,":[88],"can":[91],"leverage":[92],"features":[93],"at":[94,114],"scales,":[96],"enhancing":[97],"reconstruction":[99],"high-frequency":[101],"information.":[102],"Additionally,":[103],"we":[104],"introduce":[105],"blocks":[107],"allowing":[108],"model":[110],"capture":[112],"various":[115],"levels":[116],"abstraction":[118],"enhance":[120],"multi-scale":[121],"representation":[122],"learning":[123],"further.":[124],"Experimental":[125],"findings":[126],"show":[127],"our":[129],"suggested":[130],"approach":[131],"produces":[132],"superior":[133],"measurements,":[135],"such":[136],"as":[137],"peak":[138],"signal-to-noise":[139],"ratio":[140],"(PSNR),":[141],"structural":[142],"similarity":[143],"index":[144],"(SSIM),":[145],"visual":[146],"fidelity":[148],"(VIF),":[149],"visually":[151],"appealing":[152],"reconstructions.":[155]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4385627173","counts_by_year":[{"year":2024,"cited_by_count":3}],"updated_date":"2024-12-31T09:08:45.049901","created_date":"2023-08-08"}