{"id":"https://openalex.org/W4385413548","doi":"https://doi.org/10.1109/access.2023.3300034","title":"Advanced First-Order Optimization Algorithm With Sophisticated Search Control for Convolutional Neural Networks","display_name":"Advanced First-Order Optimization Algorithm With Sophisticated Search Control for Convolutional Neural Networks","publication_year":2023,"publication_date":"2023-01-01","ids":{"openalex":"https://openalex.org/W4385413548","doi":"https://doi.org/10.1109/access.2023.3300034"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1109/access.2023.3300034","pdf_url":"https://ieeexplore.ieee.org/ielx7/6287639/6514899/10197412.pdf","source":{"id":"https://openalex.org/S2485537415","display_name":"IEEE Access","issn_l":"2169-3536","issn":["2169-3536"],"is_oa":true,"is_in_doaj":true,"is_core":true,"host_organization":"https://openalex.org/P4310319808","host_organization_name":"Institute of Electrical and Electronics Engineers","host_organization_lineage":["https://openalex.org/P4310319808"],"host_organization_lineage_names":["Institute of Electrical and Electronics Engineers"],"type":"journal"},"license":"cc-by-nc-nd","license_id":"https://openalex.org/licenses/cc-by-nc-nd","version":"publishedVersion","is_accepted":true,"is_published":true},"type":"article","type_crossref":"journal-article","indexed_in":["crossref"],"open_access":{"is_oa":true,"oa_status":"gold","oa_url":"https://ieeexplore.ieee.org/ielx7/6287639/6514899/10197412.pdf","any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5053297562","display_name":"Kyung Soo Kim","orcid":"https://orcid.org/0000-0002-1044-3089"},"institutions":[{"id":"https://openalex.org/I113409471","display_name":"Kumoh National Institute of Technology","ror":"https://ror.org/05dkjfz60","country_code":"KR","type":"education","lineage":["https://openalex.org/I113409471"]}],"countries":["KR"],"is_corresponding":false,"raw_author_name":"Kyung Soo Kim","raw_affiliation_strings":["Department of Computer Engineering, Kumoh National Institute of Technology, Gumi, Gyeongbuk, Republic of Korea"],"affiliations":[{"raw_affiliation_string":"Department of Computer Engineering, Kumoh National Institute of Technology, Gumi, Gyeongbuk, Republic of Korea","institution_ids":["https://openalex.org/I113409471"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5100677785","display_name":"Yong Suk Choi","orcid":"https://orcid.org/0000-0002-9042-0599"},"institutions":[{"id":"https://openalex.org/I4575257","display_name":"Hanyang University","ror":"https://ror.org/046865y68","country_code":"KR","type":"education","lineage":["https://openalex.org/I4575257"]}],"countries":["KR"],"is_corresponding":false,"raw_author_name":"Yong Suk Choi","raw_affiliation_strings":["Department of Computer Science and Engineering, Hanyang University, Seoul, Republic of Korea"],"affiliations":[{"raw_affiliation_string":"Department of Computer Science and Engineering, Hanyang University, Seoul, Republic of Korea","institution_ids":["https://openalex.org/I4575257"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":2,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":{"value":1850,"currency":"USD","value_usd":1850,"provenance":"doaj"},"apc_paid":{"value":1850,"currency":"USD","value_usd":1850,"provenance":"doaj"},"fwci":0.0,"has_fulltext":true,"fulltext_origin":"pdf","cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":67},"biblio":{"volume":"11","issue":null,"first_page":"80656","last_page":"80679"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10036","display_name":"Advanced Neural Network Applications","score":0.9998,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10036","display_name":"Advanced Neural Network Applications","score":0.9998,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10627","display_name":"Advanced Image and Video Retrieval Techniques","score":0.9989,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12702","display_name":"Brain Tumor Detection and Classification","score":0.9988,"subfield":{"id":"https://openalex.org/subfields/2808","display_name":"Neurology"},"field":{"id":"https://openalex.org/fields/28","display_name":"Neuroscience"},"domain":{"id":"https://openalex.org/domains/1","display_name":"Life Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/contextual-image-classification","display_name":"Contextual image classification","score":0.41302854}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.84532136},{"id":"https://openalex.org/C81363708","wikidata":"https://www.wikidata.org/wiki/Q17084460","display_name":"Convolutional neural network","level":2,"score":0.7694012},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.61311346},{"id":"https://openalex.org/C89600930","wikidata":"https://www.wikidata.org/wiki/Q1423946","display_name":"Segmentation","level":2,"score":0.47706902},{"id":"https://openalex.org/C108583219","wikidata":"https://www.wikidata.org/wiki/Q197536","display_name":"Deep learning","level":2,"score":0.45784467},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.45555386},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.44495124},{"id":"https://openalex.org/C115961682","wikidata":"https://www.wikidata.org/wiki/Q860623","display_name":"Image (mathematics)","level":2,"score":0.44230738},{"id":"https://openalex.org/C124504099","wikidata":"https://www.wikidata.org/wiki/Q56933","display_name":"Image segmentation","level":3,"score":0.4208999},{"id":"https://openalex.org/C75294576","wikidata":"https://www.wikidata.org/wiki/Q5165192","display_name":"Contextual image classification","level":3,"score":0.41302854},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.39047265},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.341251}],"mesh":[],"locations_count":1,"locations":[{"is_oa":true,"landing_page_url":"https://doi.org/10.1109/access.2023.3300034","pdf_url":"https://ieeexplore.ieee.org/ielx7/6287639/6514899/10197412.pdf","source":{"id":"https://openalex.org/S2485537415","display_name":"IEEE Access","issn_l":"2169-3536","issn":["2169-3536"],"is_oa":true,"is_in_doaj":true,"is_core":true,"host_organization":"https://openalex.org/P4310319808","host_organization_name":"Institute of Electrical and Electronics Engineers","host_organization_lineage":["https://openalex.org/P4310319808"],"host_organization_lineage_names":["Institute of Electrical and Electronics Engineers"],"type":"journal"},"license":"cc-by-nc-nd","license_id":"https://openalex.org/licenses/cc-by-nc-nd","version":"publishedVersion","is_accepted":true,"is_published":true}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1109/access.2023.3300034","pdf_url":"https://ieeexplore.ieee.org/ielx7/6287639/6514899/10197412.pdf","source":{"id":"https://openalex.org/S2485537415","display_name":"IEEE Access","issn_l":"2169-3536","issn":["2169-3536"],"is_oa":true,"is_in_doaj":true,"is_core":true,"host_organization":"https://openalex.org/P4310319808","host_organization_name":"Institute of Electrical and Electronics Engineers","host_organization_lineage":["https://openalex.org/P4310319808"],"host_organization_lineage_names":["Institute of Electrical and Electronics Engineers"],"type":"journal"},"license":"cc-by-nc-nd","license_id":"https://openalex.org/licenses/cc-by-nc-nd","version":"publishedVersion","is_accepted":true,"is_published":true},"sustainable_development_goals":[],"grants":[{"funder":"https://openalex.org/F4320322030","funder_display_name":"Ministry of Science, ICT and Future Planning","award_id":"2020R1A2C1014037"},{"funder":"https://openalex.org/F4320322030","funder_display_name":"Ministry of Science, ICT and Future Planning","award_id":"2018R1A5A7059549"},{"funder":"https://openalex.org/F4320322120","funder_display_name":"National Research Foundation of Korea","award_id":"2022R1I1A3065378"}],"datasets":[],"versions":[],"referenced_works_count":51,"referenced_works":["https://openalex.org/W114517082","https://openalex.org/W1522301498","https://openalex.org/W1913356549","https://openalex.org/W2035700792","https://openalex.org/W2040870580","https://openalex.org/W2051434435","https://openalex.org/W2101926813","https://openalex.org/W2112796928","https://openalex.org/W2171943915","https://openalex.org/W2194775991","https://openalex.org/W2523246573","https://openalex.org/W2559597482","https://openalex.org/W2785523195","https://openalex.org/W2789876780","https://openalex.org/W2891952073","https://openalex.org/W2896457183","https://openalex.org/W2901838001","https://openalex.org/W2963446712","https://openalex.org/W2966779483","https://openalex.org/W2968917279","https://openalex.org/W2990346675","https://openalex.org/W3004456744","https://openalex.org/W3013601031","https://openalex.org/W3014041368","https://openalex.org/W3017513014","https://openalex.org/W3035661013","https://openalex.org/W3048584318","https://openalex.org/W3084521418","https://openalex.org/W3100197791","https://openalex.org/W3111951952","https://openalex.org/W3118608800","https://openalex.org/W3164284422","https://openalex.org/W3168126816","https://openalex.org/W3168997536","https://openalex.org/W3202546516","https://openalex.org/W3208021514","https://openalex.org/W4205762292","https://openalex.org/W4210339679","https://openalex.org/W4223970422","https://openalex.org/W4224305499","https://openalex.org/W4225974998","https://openalex.org/W4229439898","https://openalex.org/W4288358559","https://openalex.org/W4290043423","https://openalex.org/W4295308577","https://openalex.org/W4295424676","https://openalex.org/W4312622410","https://openalex.org/W4317795266","https://openalex.org/W4361855172","https://openalex.org/W4364322643","https://openalex.org/W4385245566"],"related_works":["https://openalex.org/W4285827401","https://openalex.org/W4220996320","https://openalex.org/W3160711233","https://openalex.org/W3018421652","https://openalex.org/W2996856019","https://openalex.org/W2986507176","https://openalex.org/W2960184797","https://openalex.org/W2912288872","https://openalex.org/W2766604260","https://openalex.org/W2470368200"],"abstract_inverted_index":{"As":[0],"the":[1,96,108,129,139,148,159],"performance":[2,142],"of":[3,143,163],"computing":[4],"devices":[5],"such":[6,32],"as":[7,33],"graphics":[8],"processing":[9],"units":[10],"(GPUs)":[11],"has":[12],"improved":[13],"dramatically,":[14],"many":[15,53],"deep":[16],"neural":[17,22],"network":[18],"models,":[19],"especially":[20],"convolutional":[21],"networks":[23],"(CNNs),":[24],"have":[25,48,56],"been":[26,50,57],"widely":[27],"applied":[28],"to":[29,90,119],"various":[30,64],"applications":[31],"image":[34,140,149],"classification,":[35],"semantic":[36],"segmentation,":[37],"and":[38,70,151,165],"object":[39],"recognition.":[40],"However,":[41],"effective":[42],"first-order":[43,74],"optimization":[44,75],"methods":[45,69,89,162],"for":[46,77],"CNNs":[47,78,145,176],"rarely":[49],"studied,":[51],"although":[52],"CNN":[54],"models":[55],"successfully":[58],"developed.":[59],"Accordingly,":[60],"this":[61],"paper":[62],"investigates":[63],"advanced":[65],"adaptive":[66,86],"solution":[67,87,100],"search":[68,88,93],"proposes":[71],"a":[72,104,121,125,171],"new":[73],"algorithm":[76],"called":[79],"Adam-ASC.":[80],"Our":[81],"approach":[82],"uses":[83],"four":[84,160],"sophisticated":[85],"adjust":[91],"its":[92],"strength":[94],"in":[95,146,174],"complicated":[97],"large-dimensional":[98],"weight":[99],"space":[101],"spanned":[102],"by":[103,177],"loss":[105],"function.":[106],"At":[107],"same":[109],"time,":[110],"we":[111,131],"explain":[112],"how":[113],"they":[114],"can":[115,136],"be":[116],"combined":[117],"compensatively":[118],"form":[120],"complete":[122],"optimizer":[123],"with":[124],"detailed":[126],"implementation.":[127],"From":[128],"experiments,":[130],"found":[132],"that":[133,158],"our":[134],"Adam-ASC":[135,164],"significantly":[137],"improve":[138],"recognition":[141],"practical":[144],"both":[147],"classification":[150],"segmentation":[152],"tasks.":[153],"These":[154],"experimental":[155],"results":[156],"show":[157],"fundamental":[161],"their":[166,180],"compensative":[167],"combination":[168],"strategy":[169],"play":[170],"crucial":[172],"role":[173],"training":[175],"effectively":[178],"finding":[179],"optimal":[181],"weights.":[182]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4385413548","counts_by_year":[],"updated_date":"2025-01-02T09:19:28.412780","created_date":"2023-08-01"}