{"id":"https://openalex.org/W4380628262","doi":"https://doi.org/10.1109/access.2023.3286311","title":"Leveraging Regression Analysis to Predict Overlapping Symptoms of Cardiovascular Diseases","display_name":"Leveraging Regression Analysis to Predict Overlapping Symptoms of Cardiovascular Diseases","publication_year":2023,"publication_date":"2023-01-01","ids":{"openalex":"https://openalex.org/W4380628262","doi":"https://doi.org/10.1109/access.2023.3286311"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1109/access.2023.3286311","pdf_url":"https://ieeexplore.ieee.org/ielx7/6287639/6514899/10151859.pdf","source":{"id":"https://openalex.org/S2485537415","display_name":"IEEE Access","issn_l":"2169-3536","issn":["2169-3536"],"is_oa":true,"is_in_doaj":true,"is_core":true,"host_organization":"https://openalex.org/P4310319808","host_organization_name":"Institute of Electrical and Electronics Engineers","host_organization_lineage":["https://openalex.org/P4310319808"],"host_organization_lineage_names":["Institute of Electrical and Electronics Engineers"],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},"type":"article","type_crossref":"journal-article","indexed_in":["crossref"],"open_access":{"is_oa":true,"oa_status":"gold","oa_url":"https://ieeexplore.ieee.org/ielx7/6287639/6514899/10151859.pdf","any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5043912347","display_name":"Sara Ghorashi","orcid":"https://orcid.org/0000-0001-5329-9163"},"institutions":[{"id":"https://openalex.org/I106778892","display_name":"Princess Nourah bint Abdulrahman University","ror":"https://ror.org/05b0cyh02","country_code":"SA","type":"education","lineage":["https://openalex.org/I106778892"]}],"countries":["SA"],"is_corresponding":false,"raw_author_name":"Sara Ghorashi","raw_affiliation_strings":["Department of Computer Sciences, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh, Saudi Arabia"],"affiliations":[{"raw_affiliation_string":"Department of Computer Sciences, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh, Saudi Arabia","institution_ids":["https://openalex.org/I106778892"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5104152999","display_name":"Khunsa Rehman","orcid":null},"institutions":[{"id":"https://openalex.org/I125830269","display_name":"Services Institute of Medical Sciences","ror":"https://ror.org/04c1d9r22","country_code":"PK","type":"education","lineage":["https://openalex.org/I125830269"]}],"countries":["PK"],"is_corresponding":false,"raw_author_name":"Khunsa Rehman","raw_affiliation_strings":["Services Institute of Medical Sciences, Lahore, Pakistan"],"affiliations":[{"raw_affiliation_string":"Services Institute of Medical Sciences, Lahore, Pakistan","institution_ids":["https://openalex.org/I125830269"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5108843376","display_name":"Anam Riaz","orcid":null},"institutions":[{"id":"https://openalex.org/I171003132","display_name":"Rawalpindi Medical University","ror":"https://ror.org/02maedm12","country_code":"PK","type":"healthcare","lineage":["https://openalex.org/I171003132"]}],"countries":["PK"],"is_corresponding":false,"raw_author_name":"Anam Riaz","raw_affiliation_strings":["Department of General Medicine, Rawalpindi Medical University, Rawalpindi, Pakistan"],"affiliations":[{"raw_affiliation_string":"Department of General Medicine, Rawalpindi Medical University, Rawalpindi, Pakistan","institution_ids":["https://openalex.org/I171003132"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5058485751","display_name":"Hend Khalid Alkahtani","orcid":"https://orcid.org/0000-0001-7507-5267"},"institutions":[{"id":"https://openalex.org/I106778892","display_name":"Princess Nourah bint Abdulrahman University","ror":"https://ror.org/05b0cyh02","country_code":"SA","type":"education","lineage":["https://openalex.org/I106778892"]}],"countries":["SA"],"is_corresponding":false,"raw_author_name":"Hend Khalid Alkahtani","raw_affiliation_strings":["Department of Computer Sciences, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh, Saudi Arabia"],"affiliations":[{"raw_affiliation_string":"Department of Computer Sciences, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh, Saudi Arabia","institution_ids":["https://openalex.org/I106778892"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5017440430","display_name":"Ahmed H. Samak","orcid":"https://orcid.org/0009-0005-4420-9265"},"institutions":[{"id":"https://openalex.org/I63601056","display_name":"Menoufia University","ror":"https://ror.org/05sjrb944","country_code":"EG","type":"education","lineage":["https://openalex.org/I63601056"]}],"countries":["EG"],"is_corresponding":false,"raw_author_name":"Ahmed H. Samak","raw_affiliation_strings":["Faculty of Science, Menofia University, Shibeen El-Kom, Egypt"],"affiliations":[{"raw_affiliation_string":"Faculty of Science, Menofia University, Shibeen El-Kom, Egypt","institution_ids":["https://openalex.org/I63601056"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5017345763","display_name":"Ivan Ch\u00e9rrez\u2010Ojeda","orcid":"https://orcid.org/0000-0002-1610-239X"},"institutions":[{"id":"https://openalex.org/I3132284232","display_name":"Universidad de Especialidades Esp\u00edritu Santo","ror":"https://ror.org/00b210x50","country_code":"EC","type":"education","lineage":["https://openalex.org/I3132284232"]}],"countries":["EC"],"is_corresponding":false,"raw_author_name":"Ivan Cherrez-Ojeda","raw_affiliation_strings":["Allergy and Pulmonology, Espíritu Santo University, Samborondón, Ecuador"],"affiliations":[{"raw_affiliation_string":"Allergy and Pulmonology, Espíritu Santo University, Samborondón, Ecuador","institution_ids":["https://openalex.org/I3132284232"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5063304041","display_name":"Amna Parveen","orcid":"https://orcid.org/0000-0002-9185-5404"},"institutions":[{"id":"https://openalex.org/I12832649","display_name":"Gachon University","ror":"https://ror.org/03ryywt80","country_code":"KR","type":"education","lineage":["https://openalex.org/I12832649"]}],"countries":["KR"],"is_corresponding":false,"raw_author_name":"Amna Parveen","raw_affiliation_strings":["College of Pharmacy, Gachon University, Medical Campus, No. 191, Hambakmoero, Yeonsu-gu, Incheon, Korea"],"affiliations":[{"raw_affiliation_string":"College of Pharmacy, Gachon University, Medical Campus, No. 191, Hambakmoero, Yeonsu-gu, Incheon, Korea","institution_ids":["https://openalex.org/I12832649"]}]}],"institution_assertions":[],"countries_distinct_count":5,"institutions_distinct_count":6,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":{"value":1850,"currency":"USD","value_usd":1850,"provenance":"doaj"},"apc_paid":{"value":1850,"currency":"USD","value_usd":1850,"provenance":"doaj"},"fwci":8.64,"has_fulltext":true,"fulltext_origin":"pdf","cited_by_count":12,"citation_normalized_percentile":{"value":0.899254,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":96,"max":97},"biblio":{"volume":"11","issue":null,"first_page":"60254","last_page":"60266"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11396","display_name":"Artificial Intelligence in Healthcare","score":0.9987,"subfield":{"id":"https://openalex.org/subfields/3605","display_name":"Health Information Management"},"field":{"id":"https://openalex.org/fields/36","display_name":"Health Professions"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}},"topics":[{"id":"https://openalex.org/T11396","display_name":"Artificial Intelligence in Healthcare","score":0.9987,"subfield":{"id":"https://openalex.org/subfields/3605","display_name":"Health Information Management"},"field":{"id":"https://openalex.org/fields/36","display_name":"Health Professions"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}},{"id":"https://openalex.org/T13702","display_name":"Machine Learning in Healthcare","score":0.9322,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T13690","display_name":"Quality and Safety in Healthcare","score":0.9166,"subfield":{"id":"https://openalex.org/subfields/3607","display_name":"Medical Laboratory Technology"},"field":{"id":"https://openalex.org/fields/36","display_name":"Health Professions"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}}],"keywords":[],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.6111694},{"id":"https://openalex.org/C152877465","wikidata":"https://www.wikidata.org/wiki/Q208042","display_name":"Regression analysis","level":2,"score":0.5357892},{"id":"https://openalex.org/C83546350","wikidata":"https://www.wikidata.org/wiki/Q1139051","display_name":"Regression","level":2,"score":0.5044526},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.3440041},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.27589762},{"id":"https://openalex.org/C105795698","wikidata":"https://www.wikidata.org/wiki/Q12483","display_name":"Statistics","level":1,"score":0.2573861},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.12790301}],"mesh":[],"locations_count":1,"locations":[{"is_oa":true,"landing_page_url":"https://doi.org/10.1109/access.2023.3286311","pdf_url":"https://ieeexplore.ieee.org/ielx7/6287639/6514899/10151859.pdf","source":{"id":"https://openalex.org/S2485537415","display_name":"IEEE Access","issn_l":"2169-3536","issn":["2169-3536"],"is_oa":true,"is_in_doaj":true,"is_core":true,"host_organization":"https://openalex.org/P4310319808","host_organization_name":"Institute of Electrical and Electronics Engineers","host_organization_lineage":["https://openalex.org/P4310319808"],"host_organization_lineage_names":["Institute of Electrical and Electronics Engineers"],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1109/access.2023.3286311","pdf_url":"https://ieeexplore.ieee.org/ielx7/6287639/6514899/10151859.pdf","source":{"id":"https://openalex.org/S2485537415","display_name":"IEEE Access","issn_l":"2169-3536","issn":["2169-3536"],"is_oa":true,"is_in_doaj":true,"is_core":true,"host_organization":"https://openalex.org/P4310319808","host_organization_name":"Institute of Electrical and Electronics Engineers","host_organization_lineage":["https://openalex.org/P4310319808"],"host_organization_lineage_names":["Institute of Electrical and Electronics Engineers"],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},"sustainable_development_goals":[{"id":"https://metadata.un.org/sdg/3","score":0.68,"display_name":"Good health and well-being"}],"grants":[{"funder":"https://openalex.org/F4320322484","funder_display_name":"Princess Nourah Bint Abdulrahman University","award_id":"PNURSP2023R384"}],"datasets":[],"versions":[],"referenced_works_count":49,"referenced_works":["https://openalex.org/W1793977955","https://openalex.org/W182371826","https://openalex.org/W1997228011","https://openalex.org/W2057402946","https://openalex.org/W2128728535","https://openalex.org/W2145899545","https://openalex.org/W2411021801","https://openalex.org/W2582204396","https://openalex.org/W2610135452","https://openalex.org/W2784105493","https://openalex.org/W2802701637","https://openalex.org/W2912361013","https://openalex.org/W2978707514","https://openalex.org/W2997216942","https://openalex.org/W3001828127","https://openalex.org/W3009563704","https://openalex.org/W3012436782","https://openalex.org/W3012687466","https://openalex.org/W3019886164","https://openalex.org/W3033523981","https://openalex.org/W3038584219","https://openalex.org/W3041799800","https://openalex.org/W3084231313","https://openalex.org/W3088658816","https://openalex.org/W3117705485","https://openalex.org/W3121216533","https://openalex.org/W3125892363","https://openalex.org/W3127657277","https://openalex.org/W3130354682","https://openalex.org/W3170595385","https://openalex.org/W3180674575","https://openalex.org/W3189848341","https://openalex.org/W3197217317","https://openalex.org/W3198304075","https://openalex.org/W4205802501","https://openalex.org/W4210253752","https://openalex.org/W4225612652","https://openalex.org/W4228997710","https://openalex.org/W4281696352","https://openalex.org/W4282573126","https://openalex.org/W4285733841","https://openalex.org/W4290052608","https://openalex.org/W4296818656","https://openalex.org/W4309930769","https://openalex.org/W4312140747","https://openalex.org/W4313472870","https://openalex.org/W4317438932","https://openalex.org/W4321368741","https://openalex.org/W4362676904"],"related_works":["https://openalex.org/W4289356671","https://openalex.org/W3186837933","https://openalex.org/W31220157","https://openalex.org/W2389155397","https://openalex.org/W2368989808","https://openalex.org/W2355687852","https://openalex.org/W2312753042","https://openalex.org/W2165884543","https://openalex.org/W2034959125","https://openalex.org/W1969346022"],"abstract_inverted_index":{"In":[0,185],"medical":[1,44,72],"informatics,":[2],"deep":[3,52,63,89],"learning-based":[4,64],"models":[5,17],"are":[6],"being":[7],"used":[8],"to":[9,33,37,49,126,174,215],"predict":[10],"and":[11,24,46,80,167,178,197,200,217],"diagnose":[12],"cardiovascular":[13],"diseases":[14,112],"(CVDs).":[15],"These":[16],"can":[18,103],"detect":[19],"clinical":[20],"signs,":[21],"recognize":[22],"phenotypes,":[23],"pick":[25],"treatment":[26],"methods":[27],"for":[28,59,92],"complicated":[29],"illnesses.":[30],"One":[31],"approach":[32],"predicting":[34],"CVDs":[35,58,96],"is":[36,222],"collect":[38],"a":[39,51,68,85,155,181],"large":[40],"dataset":[41,69],"of":[42,70,95,110,120,157,183,211,228],"patient":[43],"records":[45,73],"use":[47],"it":[48,169],"train":[50],"learning":[53],"model.":[54],"This":[55],"study":[56],"investigated":[57],"early":[60,93],"prediction":[61,94],"using":[62],"regression":[65,100],"analysis":[66],"on":[67,232],"2621":[71],"from":[74],"UAE":[75],"hospitals,":[76],"including":[77],"age,":[78],"symptoms,":[79],"CVD":[81],"information.":[82],"We":[83,224],"propose":[84],"long":[86],"short-term":[87],"memory-based":[88],"neural":[90],"network":[91],"by":[97],"leveraging":[98],"the":[99,107,111,127,160,189,204,208,220,226],"analysis.":[101],"It":[102],"be":[104],"seen":[105],"that":[106,134],"accuracy":[108,144,152,161,212,221],"level":[109],"increased":[113,172],"when":[114,151],"they":[115],"were":[116,191],"simulated":[117],"in":[118,203],"pairs":[119],"one":[121],"disease":[122,137],"with":[123,141,146,149,154,218],"another":[124],"due":[125],"overlapping":[128,148],"symptoms.":[129],"The":[130],"study's":[131],"results":[132],"suggest":[133],"coronary":[135],"heart":[136],"has":[138,170],"been":[139,171],"predicted":[140],"an":[142],"71.5%":[143],"level,":[145],"84.4%":[147],"Dyspnea;":[150],"measured":[153,213],"combination":[156],"three":[158],"conditions":[159],"was":[162],"86.7%,":[163],"Dyspnea,":[164,192],"Chest":[165,193],"Pain,":[166,194],"Cyanosis,":[168,195],"up":[173,214],"88.9%.":[175],"Weakness,":[176],"Fatigue,":[177,198],"Emptysis":[179],"showed":[180],"value":[182,210],"89.8%.":[184],"our":[186,229],"proposed":[187,230],"work,":[188],"combinations":[190],"Weakness":[196],"Emptysis,":[199],"discomfort":[201],"pressure":[202],"chest":[205],"have":[206],"shown":[207],"ideal":[209],"90.6%,":[216],"Fever,":[219],"91%.":[223],"show":[225],"effectiveness":[227],"method":[231],"several":[233],"evaluation":[234],"benchmarks.":[235]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4380628262","counts_by_year":[{"year":2024,"cited_by_count":10},{"year":2023,"cited_by_count":2}],"updated_date":"2025-01-18T15:08:01.309340","created_date":"2023-06-15"}