{"id":"https://openalex.org/W4382769645","doi":"https://doi.org/10.1109/access.2023.3275024","title":"DepCap: A Smart Healthcare Framework for EEG Based Depression Detection Using Time-Frequency Response and Deep Neural Network","display_name":"DepCap: A Smart Healthcare Framework for EEG Based Depression Detection Using Time-Frequency Response and Deep Neural Network","publication_year":2023,"publication_date":"2023-01-01","ids":{"openalex":"https://openalex.org/W4382769645","doi":"https://doi.org/10.1109/access.2023.3275024"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1109/access.2023.3275024","pdf_url":"https://ieeexplore.ieee.org/ielx7/6287639/10005208/10122495.pdf","source":{"id":"https://openalex.org/S2485537415","display_name":"IEEE Access","issn_l":"2169-3536","issn":["2169-3536"],"is_oa":true,"is_in_doaj":true,"is_core":true,"host_organization":"https://openalex.org/P4310319808","host_organization_name":"Institute of Electrical and Electronics Engineers","host_organization_lineage":["https://openalex.org/P4310319808"],"host_organization_lineage_names":["Institute of Electrical and Electronics Engineers"],"type":"journal"},"license":"cc-by-nc-nd","license_id":"https://openalex.org/licenses/cc-by-nc-nd","version":"publishedVersion","is_accepted":true,"is_published":true},"type":"article","type_crossref":"journal-article","indexed_in":["crossref"],"open_access":{"is_oa":true,"oa_status":"gold","oa_url":"https://ieeexplore.ieee.org/ielx7/6287639/10005208/10122495.pdf","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5045848573","display_name":"Geetanjali Sharma","orcid":"https://orcid.org/0000-0002-8906-7820"},"institutions":[{"id":"https://openalex.org/I83205935","display_name":"Malaviya National Institute of Technology Jaipur","ror":"https://ror.org/0077k1j32","country_code":"IN","type":"education","lineage":["https://openalex.org/I83205935"]}],"countries":["IN"],"is_corresponding":false,"raw_author_name":"Geetanjali Sharma","raw_affiliation_strings":["Department of Electronics and Communication Engineering, Maharaja Surajmal Institute of Technology, Delhi, India","Department of Electronics and Communication Engineering, Malaviya National Institute of Technology, Jaipur, India"],"affiliations":[{"raw_affiliation_string":"Department of Electronics and Communication Engineering, Malaviya National Institute of Technology, Jaipur, India","institution_ids":["https://openalex.org/I83205935"]},{"raw_affiliation_string":"Department of Electronics and Communication Engineering, Maharaja Surajmal Institute of Technology, Delhi, India","institution_ids":[]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5005876655","display_name":"Amit M. Joshi","orcid":"https://orcid.org/0000-0001-7919-1652"},"institutions":[{"id":"https://openalex.org/I83205935","display_name":"Malaviya National Institute of Technology Jaipur","ror":"https://ror.org/0077k1j32","country_code":"IN","type":"education","lineage":["https://openalex.org/I83205935"]}],"countries":["IN"],"is_corresponding":false,"raw_author_name":"Amit M. Joshi","raw_affiliation_strings":["Department of Electronics and Communication Engineering, Malaviya National Institute of Technology, Jaipur, India"],"affiliations":[{"raw_affiliation_string":"Department of Electronics and Communication Engineering, Malaviya National Institute of Technology, Jaipur, India","institution_ids":["https://openalex.org/I83205935"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5000952570","display_name":"Richa Gupta","orcid":"https://orcid.org/0000-0003-1736-0910"},"institutions":[],"countries":["IN"],"is_corresponding":false,"raw_author_name":"Richa Gupta","raw_affiliation_strings":["Department of Electronics and Communication Engineering, Maharaja Surajmal Institute of Technology, Delhi, India"],"affiliations":[{"raw_affiliation_string":"Department of Electronics and Communication Engineering, Maharaja Surajmal Institute of Technology, Delhi, India","institution_ids":[]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5014288820","display_name":"Linga Reddy Cenkeramaddi","orcid":"https://orcid.org/0000-0002-1023-2118"},"institutions":[{"id":"https://openalex.org/I200650556","display_name":"University of Agder","ror":"https://ror.org/03x297z98","country_code":"NO","type":"education","lineage":["https://openalex.org/I200650556"]}],"countries":["NO"],"is_corresponding":false,"raw_author_name":"Linga Reddy Cenkeramaddi","raw_affiliation_strings":["Department of Information and Communication Technology, University of Agder, Grimstad, Norway"],"affiliations":[{"raw_affiliation_string":"Department of Information and Communication Technology, University of Agder, Grimstad, Norway","institution_ids":["https://openalex.org/I200650556"]}]}],"institution_assertions":[],"countries_distinct_count":2,"institutions_distinct_count":2,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":{"value":1850,"currency":"USD","value_usd":1850,"provenance":"doaj"},"apc_paid":{"value":1850,"currency":"USD","value_usd":1850,"provenance":"doaj"},"fwci":8.218,"has_fulltext":true,"fulltext_origin":"pdf","cited_by_count":23,"citation_normalized_percentile":{"value":0.999929,"is_in_top_1_percent":true,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":98,"max":99},"biblio":{"volume":"11","issue":null,"first_page":"52327","last_page":"52338"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10429","display_name":"EEG and Brain-Computer Interfaces","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/2805","display_name":"Cognitive Neuroscience"},"field":{"id":"https://openalex.org/fields/28","display_name":"Neuroscience"},"domain":{"id":"https://openalex.org/domains/1","display_name":"Life Sciences"}},"topics":[{"id":"https://openalex.org/T10429","display_name":"EEG and Brain-Computer Interfaces","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/2805","display_name":"Cognitive Neuroscience"},"field":{"id":"https://openalex.org/fields/28","display_name":"Neuroscience"},"domain":{"id":"https://openalex.org/domains/1","display_name":"Life Sciences"}},{"id":"https://openalex.org/T11021","display_name":"ECG Monitoring and Analysis","score":0.9992,"subfield":{"id":"https://openalex.org/subfields/2705","display_name":"Cardiology and Cardiovascular Medicine"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}},{"id":"https://openalex.org/T11196","display_name":"Non-Invasive Vital Sign Monitoring","score":0.9917,"subfield":{"id":"https://openalex.org/subfields/2204","display_name":"Biomedical Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/spectrogram","display_name":"Spectrogram","score":0.7266734}],"concepts":[{"id":"https://openalex.org/C166386157","wikidata":"https://www.wikidata.org/wiki/Q1477735","display_name":"Short-time Fourier transform","level":4,"score":0.84062815},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.7626482},{"id":"https://openalex.org/C45273575","wikidata":"https://www.wikidata.org/wiki/Q578970","display_name":"Spectrogram","level":2,"score":0.7266734},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.72479284},{"id":"https://openalex.org/C81363708","wikidata":"https://www.wikidata.org/wiki/Q17084460","display_name":"Convolutional neural network","level":2,"score":0.71540165},{"id":"https://openalex.org/C147168706","wikidata":"https://www.wikidata.org/wiki/Q1457734","display_name":"Recurrent neural network","level":3,"score":0.6163605},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.57355523},{"id":"https://openalex.org/C108583219","wikidata":"https://www.wikidata.org/wiki/Q197536","display_name":"Deep learning","level":2,"score":0.56509435},{"id":"https://openalex.org/C52622490","wikidata":"https://www.wikidata.org/wiki/Q1026626","display_name":"Feature extraction","level":2,"score":0.48415238},{"id":"https://openalex.org/C522805319","wikidata":"https://www.wikidata.org/wiki/Q179965","display_name":"Electroencephalography","level":2,"score":0.42943543},{"id":"https://openalex.org/C28490314","wikidata":"https://www.wikidata.org/wiki/Q189436","display_name":"Speech recognition","level":1,"score":0.42940086},{"id":"https://openalex.org/C150594956","wikidata":"https://www.wikidata.org/wiki/Q1334829","display_name":"Wearable computer","level":2,"score":0.41896063},{"id":"https://openalex.org/C142433447","wikidata":"https://www.wikidata.org/wiki/Q7806653","display_name":"Time\u2013frequency analysis","level":3,"score":0.41708553},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.33258006},{"id":"https://openalex.org/C102519508","wikidata":"https://www.wikidata.org/wiki/Q6520159","display_name":"Fourier transform","level":2,"score":0.24369553},{"id":"https://openalex.org/C31972630","wikidata":"https://www.wikidata.org/wiki/Q844240","display_name":"Computer vision","level":1,"score":0.20061505},{"id":"https://openalex.org/C15744967","wikidata":"https://www.wikidata.org/wiki/Q9418","display_name":"Psychology","level":0,"score":0.08589542},{"id":"https://openalex.org/C169760540","wikidata":"https://www.wikidata.org/wiki/Q207011","display_name":"Neuroscience","level":1,"score":0.084916264},{"id":"https://openalex.org/C203024314","wikidata":"https://www.wikidata.org/wiki/Q1365258","display_name":"Fourier analysis","level":3,"score":0.07953462},{"id":"https://openalex.org/C134306372","wikidata":"https://www.wikidata.org/wiki/Q7754","display_name":"Mathematical analysis","level":1,"score":0.0},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.0},{"id":"https://openalex.org/C106131492","wikidata":"https://www.wikidata.org/wiki/Q3072260","display_name":"Filter (signal processing)","level":2,"score":0.0},{"id":"https://openalex.org/C149635348","wikidata":"https://www.wikidata.org/wiki/Q193040","display_name":"Embedded system","level":1,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":true,"landing_page_url":"https://doi.org/10.1109/access.2023.3275024","pdf_url":"https://ieeexplore.ieee.org/ielx7/6287639/10005208/10122495.pdf","source":{"id":"https://openalex.org/S2485537415","display_name":"IEEE Access","issn_l":"2169-3536","issn":["2169-3536"],"is_oa":true,"is_in_doaj":true,"is_core":true,"host_organization":"https://openalex.org/P4310319808","host_organization_name":"Institute of Electrical and Electronics Engineers","host_organization_lineage":["https://openalex.org/P4310319808"],"host_organization_lineage_names":["Institute of Electrical and Electronics Engineers"],"type":"journal"},"license":"cc-by-nc-nd","license_id":"https://openalex.org/licenses/cc-by-nc-nd","version":"publishedVersion","is_accepted":true,"is_published":true},{"is_oa":true,"landing_page_url":"https://hdl.handle.net/11250/3126815","pdf_url":"https://uia.brage.unit.no/uia-xmlui/bitstream/11250/3126815/4/Article.pdf","source":{"id":"https://openalex.org/S4306401716","display_name":"Duo Research Archive (University of Oslo)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I184942183","host_organization_name":"University of Oslo","host_organization_lineage":["https://openalex.org/I184942183"],"host_organization_lineage_names":["University of Oslo"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1109/access.2023.3275024","pdf_url":"https://ieeexplore.ieee.org/ielx7/6287639/10005208/10122495.pdf","source":{"id":"https://openalex.org/S2485537415","display_name":"IEEE Access","issn_l":"2169-3536","issn":["2169-3536"],"is_oa":true,"is_in_doaj":true,"is_core":true,"host_organization":"https://openalex.org/P4310319808","host_organization_name":"Institute of Electrical and Electronics Engineers","host_organization_lineage":["https://openalex.org/P4310319808"],"host_organization_lineage_names":["Institute of Electrical and Electronics Engineers"],"type":"journal"},"license":"cc-by-nc-nd","license_id":"https://openalex.org/licenses/cc-by-nc-nd","version":"publishedVersion","is_accepted":true,"is_published":true},"sustainable_development_goals":[],"grants":[{"funder":"https://openalex.org/F4320323299","funder_display_name":"Norges Forskningsr\u00e5d","award_id":"287918"}],"datasets":[],"versions":[],"referenced_works_count":57,"referenced_works":["https://openalex.org/W1823928250","https://openalex.org/W1879995557","https://openalex.org/W1969692299","https://openalex.org/W1996687698","https://openalex.org/W2005692707","https://openalex.org/W2064675550","https://openalex.org/W2479263883","https://openalex.org/W2485095717","https://openalex.org/W2526511911","https://openalex.org/W2625088583","https://openalex.org/W2748902594","https://openalex.org/W2759483166","https://openalex.org/W2765435753","https://openalex.org/W2769755321","https://openalex.org/W2800428573","https://openalex.org/W2885839206","https://openalex.org/W2889245000","https://openalex.org/W2896806491","https://openalex.org/W2916882487","https://openalex.org/W2925024134","https://openalex.org/W2945280224","https://openalex.org/W2947343305","https://openalex.org/W2948008503","https://openalex.org/W2979689127","https://openalex.org/W2983719041","https://openalex.org/W3004404036","https://openalex.org/W3004599123","https://openalex.org/W3090006181","https://openalex.org/W3092388691","https://openalex.org/W3094327940","https://openalex.org/W3105250175","https://openalex.org/W3121117531","https://openalex.org/W3128756627","https://openalex.org/W3130743277","https://openalex.org/W3131775586","https://openalex.org/W3157024423","https://openalex.org/W3157219251","https://openalex.org/W3158631207","https://openalex.org/W3170379744","https://openalex.org/W3171592962","https://openalex.org/W3187023453","https://openalex.org/W3188077261","https://openalex.org/W3206645122","https://openalex.org/W3215417281","https://openalex.org/W3215950319","https://openalex.org/W4205354408","https://openalex.org/W4206900226","https://openalex.org/W4210328027","https://openalex.org/W4211037405","https://openalex.org/W4225581311","https://openalex.org/W4225685342","https://openalex.org/W4283386328","https://openalex.org/W4283689687","https://openalex.org/W4287510307","https://openalex.org/W4290716257","https://openalex.org/W4298168912","https://openalex.org/W4312396856"],"related_works":["https://openalex.org/W4381416811","https://openalex.org/W3095343173","https://openalex.org/W2909460703","https://openalex.org/W2901989338","https://openalex.org/W2533590149","https://openalex.org/W2381036744","https://openalex.org/W2323749021","https://openalex.org/W2288135719","https://openalex.org/W2120540196","https://openalex.org/W1889291648"],"abstract_inverted_index":{"A":[0,95],"novel":[1,43],"wearable":[2,44,229],"consumer":[3],"electronics":[4],"device":[5,230],"for":[6,19,49,180,250],"detecting":[7],"Major":[8],"Depressive":[9],"Disorder":[10],"(MDD)":[11],"has":[12,204],"been":[13],"developed":[14],"using":[15,54,71,100],"deep":[16,96],"learning":[17],"techniques":[18],"smart":[20,45],"healthcare.":[21],"Accurate":[22],"identification":[23],"of":[24,41,52,66,105,147,210,216,245],"MDD":[25],"through":[26],"individual":[27],"interviews":[28],"or":[29],"perceiving":[30],"Electroencephalogram":[31],"(EEG)":[32],"signals":[33,65],"is":[34,98,183,232,239],"challenging.":[35],"This":[36],"study":[37],"presents":[38],"the":[39,63,92,123,143,175,202,235,243],"concept":[40],"a":[42,184],"cap":[46],"named":[47],"DepCap":[48,231],"real-time":[50,251],"detection":[51],"depression":[53,252],"EEG":[55,64],"signals.":[56],"First,":[57],"spectrogram":[58,82],"images":[59,83],"are":[60,87,116,127,142,157,170],"generated":[61],"from":[62,85,122],"depressed":[67],"and":[68,110,137,160,168,193,214,220,238],"healthy":[69,195],"patients":[70],"Short-Time":[72],"Fourier":[73],"Transform":[74],"(STFT)":[75],"to":[76,91,118,129],"extract":[77,119],"valuable":[78],"features.":[79],"Then,":[80],"these":[81],"obtained":[84],"STFT":[86],"used":[88,117,128],"as":[89],"input":[90],"classification":[93],"model.":[94],"analysis":[97],"done":[99],"various":[101],"neural":[102],"networks":[103],"consisting":[104],"Convolutional":[106],"Neural":[107,112],"Networks":[108,113],"(CNNs)":[109],"Recurrent":[111,139],"(RNNs).":[114],"RNNs":[115,148],"temporal":[120],"data":[121],"EEG,":[124],"while":[125],"CNNs":[126],"retrieve":[130],"spatial":[131],"information.":[132],"Long":[133],"Short-Term":[134],"Memory":[135],"(LSTM)":[136],"Gated":[138],"Unit":[140],"(GRU)":[141],"two":[144],"different":[145],"kinds":[146],"evaluated":[149],"in":[150,208],"this":[151,181],"work.":[152],"The":[153,178,197,227],"implemented":[154,172,225],"combination":[155,176],"models":[156],"(STFT+CNN),":[158],"(STFT+CNN-LSTM)":[159],"(STFT+CNN-GRU).":[161],"Four":[162],"pre-trained":[163],"models,":[164],"Inception,":[165],"AlexNet,":[166],"VGG16,":[167],"ResNet50":[169],"also":[171,240],"along":[173],"with":[174,188,242],"models.":[177,226],"dataset":[179,187],"work":[182],"publicly":[185],"accessible":[186],"33":[189],"major":[190],"depressive":[191],"disorders":[192],"30":[194],"subjects.":[196],"evaluation":[198],"results":[199],"show":[200],"that":[201],"STFT+CNN-LSTM":[203],"much":[205],"better":[206],"performance":[207],"terms":[209],"accuracy,":[211],"sensitivity,":[212],"specificity,":[213],"precision":[215],"99.9%,":[217],"100%,":[218],"99.8%,":[219],"99.4%,":[221],"respectively,":[222],"than":[223],"other":[224],"proposed":[228],"based":[233],"on":[234],"STFT+CNN+LSTM":[236],"model":[237],"integrated":[241],"Internet":[244],"Medical":[246],"Things":[247],"(IoMT)":[248],"framework":[249],"detection.":[253]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4382769645","counts_by_year":[{"year":2024,"cited_by_count":15},{"year":2023,"cited_by_count":8}],"updated_date":"2025-01-07T12:27:15.670969","created_date":"2023-07-01"}