{"id":"https://openalex.org/W4206167561","doi":"https://doi.org/10.1109/access.2021.3133276","title":"Selfie Segmentation in Video Using N-Frames Ensemble","display_name":"Selfie Segmentation in Video Using N-Frames Ensemble","publication_year":2021,"publication_date":"2021-01-01","ids":{"openalex":"https://openalex.org/W4206167561","doi":"https://doi.org/10.1109/access.2021.3133276"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1109/access.2021.3133276","pdf_url":"https://ieeexplore.ieee.org/ielx7/6287639/6514899/09638657.pdf","source":{"id":"https://openalex.org/S2485537415","display_name":"IEEE Access","issn_l":"2169-3536","issn":["2169-3536"],"is_oa":true,"is_in_doaj":true,"is_core":true,"host_organization":"https://openalex.org/P4310319808","host_organization_name":"Institute of Electrical and Electronics Engineers","host_organization_lineage":["https://openalex.org/P4310319808"],"host_organization_lineage_names":["Institute of Electrical and Electronics Engineers"],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},"type":"article","type_crossref":"journal-article","indexed_in":["crossref","doaj"],"open_access":{"is_oa":true,"oa_status":"gold","oa_url":"https://ieeexplore.ieee.org/ielx7/6287639/6514899/09638657.pdf","any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5050487609","display_name":"Young-Woon Kim","orcid":"https://orcid.org/0000-0002-4759-0138"},"institutions":[{"id":"https://openalex.org/I48018076","display_name":"Christ University","ror":"https://ror.org/022tv9y30","country_code":"IN","type":"education","lineage":["https://openalex.org/I48018076"]}],"countries":["IN"],"is_corresponding":false,"raw_author_name":"Yong-Woon Kim","raw_affiliation_strings":["Centre for Digital Innovation, CHRIST (Deemed to be University), Bangalore, Karnataka, 560029, India"],"affiliations":[{"raw_affiliation_string":"Centre for Digital Innovation, CHRIST (Deemed to be University), Bangalore, Karnataka, 560029, India","institution_ids":["https://openalex.org/I48018076"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5110809957","display_name":"Yung-Cheol Byun","orcid":null},"institutions":[{"id":"https://openalex.org/I83202590","display_name":"Jeju National University","ror":"https://ror.org/05hnb4n85","country_code":"KR","type":"education","lineage":["https://openalex.org/I83202590"]}],"countries":["KR"],"is_corresponding":false,"raw_author_name":"Yung-Cheol Byun","raw_affiliation_strings":["Department of Computer Engineering, Jeju National University, Jeju 63243, South Korea"],"affiliations":[{"raw_affiliation_string":"Department of Computer Engineering, Jeju National University, Jeju 63243, South Korea","institution_ids":["https://openalex.org/I83202590"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5087688652","display_name":"Addepalli V. N. Krishna","orcid":"https://orcid.org/0000-0002-3835-511X"},"institutions":[{"id":"https://openalex.org/I48018076","display_name":"Christ University","ror":"https://ror.org/022tv9y30","country_code":"IN","type":"education","lineage":["https://openalex.org/I48018076"]}],"countries":["IN"],"is_corresponding":false,"raw_author_name":"Addapalli V. N. Krishna","raw_affiliation_strings":["Department of Computer Science and Engineering, CHRIST (Deemed to be University), Bangalore, Karnataka, 560029, India"],"affiliations":[{"raw_affiliation_string":"Department of Computer Science and Engineering, CHRIST (Deemed to be University), Bangalore, Karnataka, 560029, India","institution_ids":["https://openalex.org/I48018076"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5001950500","display_name":"K. Balachandran","orcid":null},"institutions":[{"id":"https://openalex.org/I48018076","display_name":"Christ University","ror":"https://ror.org/022tv9y30","country_code":"IN","type":"education","lineage":["https://openalex.org/I48018076"]}],"countries":["IN"],"is_corresponding":false,"raw_author_name":"Balachandran Krishnan","raw_affiliation_strings":["Department of Computer Science and Engineering, CHRIST (Deemed to be University), Bangalore, Karnataka, 560029, India"],"affiliations":[{"raw_affiliation_string":"Department of Computer Science and Engineering, CHRIST (Deemed to be University), Bangalore, Karnataka, 560029, India","institution_ids":["https://openalex.org/I48018076"]}]}],"institution_assertions":[],"countries_distinct_count":2,"institutions_distinct_count":2,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":{"value":1850,"currency":"USD","value_usd":1850,"provenance":"doaj"},"apc_paid":{"value":1850,"currency":"USD","value_usd":1850,"provenance":"doaj"},"fwci":0.306,"has_fulltext":true,"fulltext_origin":"pdf","cited_by_count":3,"citation_normalized_percentile":{"value":0.719965,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":72,"max":76},"biblio":{"volume":"9","issue":null,"first_page":"163348","last_page":"163362"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10775","display_name":"Generative Adversarial Networks and Image Synthesis","score":0.9997,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10775","display_name":"Generative Adversarial Networks and Image Synthesis","score":0.9997,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10331","display_name":"Video Surveillance and Tracking Methods","score":0.9991,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11448","display_name":"Face recognition and analysis","score":0.999,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/selfie","display_name":"Selfie","score":0.59252226}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.77880347},{"id":"https://openalex.org/C31972630","wikidata":"https://www.wikidata.org/wiki/Q844240","display_name":"Computer vision","level":1,"score":0.616549},{"id":"https://openalex.org/C2777454149","wikidata":"https://www.wikidata.org/wiki/Q12068677","display_name":"Selfie","level":2,"score":0.59252226},{"id":"https://openalex.org/C89600930","wikidata":"https://www.wikidata.org/wiki/Q1423946","display_name":"Segmentation","level":2,"score":0.57735133},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.5432138},{"id":"https://openalex.org/C121684516","wikidata":"https://www.wikidata.org/wiki/Q7600677","display_name":"Computer graphics (images)","level":1,"score":0.44073135},{"id":"https://openalex.org/C124504099","wikidata":"https://www.wikidata.org/wiki/Q56933","display_name":"Image segmentation","level":3,"score":0.42985052},{"id":"https://openalex.org/C136764020","wikidata":"https://www.wikidata.org/wiki/Q466","display_name":"World Wide Web","level":1,"score":0.143098}],"mesh":[],"locations_count":2,"locations":[{"is_oa":true,"landing_page_url":"https://doi.org/10.1109/access.2021.3133276","pdf_url":"https://ieeexplore.ieee.org/ielx7/6287639/6514899/09638657.pdf","source":{"id":"https://openalex.org/S2485537415","display_name":"IEEE Access","issn_l":"2169-3536","issn":["2169-3536"],"is_oa":true,"is_in_doaj":true,"is_core":true,"host_organization":"https://openalex.org/P4310319808","host_organization_name":"Institute of Electrical and Electronics Engineers","host_organization_lineage":["https://openalex.org/P4310319808"],"host_organization_lineage_names":["Institute of Electrical and Electronics Engineers"],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},{"is_oa":false,"landing_page_url":"https://doaj.org/article/1b25365ee4534fae95beb74659001a19","pdf_url":null,"source":{"id":"https://openalex.org/S4306401280","display_name":"DOAJ (DOAJ: Directory of Open Access Journals)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"repository"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1109/access.2021.3133276","pdf_url":"https://ieeexplore.ieee.org/ielx7/6287639/6514899/09638657.pdf","source":{"id":"https://openalex.org/S2485537415","display_name":"IEEE Access","issn_l":"2169-3536","issn":["2169-3536"],"is_oa":true,"is_in_doaj":true,"is_core":true,"host_organization":"https://openalex.org/P4310319808","host_organization_name":"Institute of Electrical and Electronics Engineers","host_organization_lineage":["https://openalex.org/P4310319808"],"host_organization_lineage_names":["Institute of Electrical and Electronics Engineers"],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},"sustainable_development_goals":[],"grants":[{"funder":"https://openalex.org/F4320322064","funder_display_name":"Korea Institute for Advancement of Technology","award_id":null},{"funder":"https://openalex.org/F4320322120","funder_display_name":"National Research Foundation of Korea","award_id":null}],"datasets":[],"versions":[],"referenced_works_count":53,"referenced_works":["https://openalex.org/W1538493107","https://openalex.org/W1583006453","https://openalex.org/W1903029394","https://openalex.org/W2110065044","https://openalex.org/W2135293965","https://openalex.org/W2148347694","https://openalex.org/W2155806188","https://openalex.org/W2300687442","https://openalex.org/W2400000673","https://openalex.org/W2412782625","https://openalex.org/W2518810941","https://openalex.org/W2559597482","https://openalex.org/W2564998703","https://openalex.org/W2579318141","https://openalex.org/W2618412219","https://openalex.org/W2770233088","https://openalex.org/W2774809485","https://openalex.org/W2804860796","https://openalex.org/W2810392541","https://openalex.org/W28412257","https://openalex.org/W2904783346","https://openalex.org/W2934985924","https://openalex.org/W2950187406","https://openalex.org/W2962772649","https://openalex.org/W2962891619","https://openalex.org/W2963163009","https://openalex.org/W2963418739","https://openalex.org/W2963881378","https://openalex.org/W2964309882","https://openalex.org/W2966112933","https://openalex.org/W2982083293","https://openalex.org/W2989684653","https://openalex.org/W2995932445","https://openalex.org/W2996435388","https://openalex.org/W2996803365","https://openalex.org/W3010290049","https://openalex.org/W3044386764","https://openalex.org/W3047032303","https://openalex.org/W3083765505","https://openalex.org/W3084720774","https://openalex.org/W3100816363","https://openalex.org/W3104724231","https://openalex.org/W3108812043","https://openalex.org/W3116287238","https://openalex.org/W3128235422","https://openalex.org/W3128236786","https://openalex.org/W3132455321","https://openalex.org/W3173891837","https://openalex.org/W3193827700","https://openalex.org/W40442397","https://openalex.org/W4232478844","https://openalex.org/W4240294902","https://openalex.org/W4253153980"],"related_works":["https://openalex.org/W4362657427","https://openalex.org/W4307239547","https://openalex.org/W4251333111","https://openalex.org/W3122792572","https://openalex.org/W3028531746","https://openalex.org/W3003689229","https://openalex.org/W2888671135","https://openalex.org/W2795495259","https://openalex.org/W2759481820","https://openalex.org/W1522196789"],"abstract_inverted_index":{"Many":[0],"camera":[1],"apps":[2],"and":[3,20,41,113,134,161,183,257],"online":[4],"video":[5,86,111],"conference":[6],"solutions":[7],"support":[8],"instant":[9],"selfie":[10,39,82,210,248],"segmentation":[11,31,53,69,83,106,115,132,171,211,249,259,266],"or":[12],"virtual":[13],"background":[14],"function":[15],"for":[16,38,80],"entertainment,":[17],"aesthetic,":[18],"privacy,":[19],"security":[21],"reasons.A":[22],"good":[23],"number":[24],"of":[25,44,51,90,117,170,176,195,209,219,264],"studies":[26],"show":[27],"that":[28,202,224],"Deep-Learning":[29],"based":[30],"model":[32,107],"(DSM)":[33],"is":[34,56,243],"a":[35,71,81,85,95,109,139],"reasonable":[36],"choice":[37],"segmentation,":[40],"the":[42,49,52,67,122,125,168,177,184,191,203,207,225,237,240,251,262],"ensemble":[43,78,89,101,180,187,263],"multiple":[45,91,265],"DSMs":[46,92],"can":[47],"improve":[48],"precision":[50],"result.However,":[54],"it":[55,254],"not":[57],"fit":[58],"well":[59],"when":[60],"we":[61,127],"apply":[62],"these":[63],"approaches":[64],"directly":[65],"to":[66,93,120,166],"image":[68,131],"in":[70,84],"video.This":[72],"paper":[73,146],"proposes":[74],"an":[75,88],"N-Frames":[76],"(NF)":[77],"approach":[79,102,205,242],"using":[87],"achieve":[94],"high-performance":[96],"automatic":[97],"segmentation.The":[98],"proposed":[99,204,226,241],"NF":[100,179,186],"executes":[103],"only":[104],"one":[105],"upon":[108],"current":[110],"frame":[112],"combines":[114],"results":[116,260],"previous":[118],"frames":[119],"produce":[121],"final":[123],"result.For":[124],"experiment,":[126],"use":[128],"four":[129],"state-of-the-art":[130],"models":[133,197,267],"81":[135],"videos":[136],"dataset":[137],"with":[138],"single-person":[140],"view":[141],"from":[142],"publicly":[143],"available":[144],"websites.This":[145],"calculates":[147],"Intersection":[148],"over":[149],"Union":[150],"(IoU),":[151],"IoU":[152,174,193],"standard":[153],"deviation,":[154],"false":[155],"prediction":[156],"rate,":[157],"Memory":[158],"Efficiency":[159,164],"Rate":[160,165],"Computing":[162],"power":[163,231],"measure":[167],"performance":[169],"models.The":[172],"average":[173,192],"value":[175,194],"Two-Frames":[178],"was":[181,188,198],"95.1253%,":[182],"Three-Frames":[185],"95.1734%,":[189],"whereas":[190],"single":[196,233,247],"92.9653%.The":[199],"result":[200,218],"shows":[201,223],"improves":[206],"accuracy":[208],"by":[212],"more":[213],"than":[214],"2%":[215],"on":[216],"average.The":[217],"cost":[220],"efficiency":[221],"measurement":[222],"method":[227],"consumes":[228],"less":[229],"computing":[230],"like":[232,261],"models.To":[234],"sum":[235],"up":[236],"overall":[238],"work,":[239],"as":[244,246],"fast":[245],"models.At":[250],"same":[252],"time,":[253],"produces":[255],"optimized":[256],"improved":[258],"at":[268],"once.":[269]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4206167561","counts_by_year":[{"year":2024,"cited_by_count":1},{"year":2023,"cited_by_count":1},{"year":2022,"cited_by_count":1}],"updated_date":"2024-12-24T05:16:03.091066","created_date":"2022-01-25"}