{"id":"https://openalex.org/W3214320970","doi":"https://doi.org/10.1109/access.2021.3128273","title":"High Security Finger Vein Recognition Based on Robust Keypoint Correspondence Clustering","display_name":"High Security Finger Vein Recognition Based on Robust Keypoint Correspondence Clustering","publication_year":2021,"publication_date":"2021-01-01","ids":{"openalex":"https://openalex.org/W3214320970","doi":"https://doi.org/10.1109/access.2021.3128273","mag":"3214320970"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1109/access.2021.3128273","pdf_url":null,"source":{"id":"https://openalex.org/S2485537415","display_name":"IEEE Access","issn_l":"2169-3536","issn":["2169-3536"],"is_oa":true,"is_in_doaj":true,"is_core":true,"host_organization":"https://openalex.org/P4310319808","host_organization_name":"Institute of Electrical and Electronics Engineers","host_organization_lineage":["https://openalex.org/P4310319808"],"host_organization_lineage_names":["Institute of Electrical and Electronics Engineers"],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},"type":"article","type_crossref":"journal-article","indexed_in":["crossref","doaj"],"open_access":{"is_oa":true,"oa_status":"gold","oa_url":"https://doi.org/10.1109/access.2021.3128273","any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5100330228","display_name":"Guang Zhang","orcid":"https://orcid.org/0000-0001-6630-1912"},"institutions":[{"id":"https://openalex.org/I4210163399","display_name":"Shandong First Medical University","ror":"https://ror.org/05jb9pq57","country_code":"CN","type":"education","lineage":["https://openalex.org/I4210163399"]},{"id":"https://openalex.org/I154099455","display_name":"Shandong University","ror":"https://ror.org/0207yh398","country_code":"CN","type":"education","lineage":["https://openalex.org/I154099455"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Guang Zhang","raw_affiliation_strings":["School of Software Engineering, Shandong University, Jinan 250101, China and First Affiliated Hospital of Shandong First Medical University, Jinan 250014, China."],"affiliations":[{"raw_affiliation_string":"School of Software Engineering, Shandong University, Jinan 250101, China and First Affiliated Hospital of Shandong First Medical University, Jinan 250014, China.","institution_ids":["https://openalex.org/I4210163399","https://openalex.org/I154099455"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5102962927","display_name":"Xianjing Meng","orcid":"https://orcid.org/0000-0001-5697-7898"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Xianjing Meng","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":2,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":{"value":1850,"currency":"USD","value_usd":1850,"provenance":"doaj"},"apc_paid":{"value":1850,"currency":"USD","value_usd":1850,"provenance":"doaj"},"fwci":0.416,"has_fulltext":false,"cited_by_count":3,"citation_normalized_percentile":{"value":0.569688,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":72,"max":76},"biblio":{"volume":"9","issue":null,"first_page":"154058","last_page":"154070"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10828","display_name":"Biometric Identification and Security","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/1711","display_name":"Signal Processing"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10828","display_name":"Biometric Identification and Security","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/1711","display_name":"Signal Processing"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T14333","display_name":"Dermatoglyphics and Human Traits","score":0.979,"subfield":{"id":"https://openalex.org/subfields/1311","display_name":"Genetics"},"field":{"id":"https://openalex.org/fields/13","display_name":"Biochemistry, Genetics and Molecular Biology"},"domain":{"id":"https://openalex.org/domains/1","display_name":"Life Sciences"}},{"id":"https://openalex.org/T10751","display_name":"Forensic and Genetic Research","score":0.9458,"subfield":{"id":"https://openalex.org/subfields/1311","display_name":"Genetics"},"field":{"id":"https://openalex.org/fields/13","display_name":"Biochemistry, Genetics and Molecular Biology"},"domain":{"id":"https://openalex.org/domains/1","display_name":"Life Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/scale-invariant-feature-transform","display_name":"Scale-invariant feature transform","score":0.6123185},{"id":"https://openalex.org/keywords/word-error-rate","display_name":"Word error rate","score":0.52407926}],"concepts":[{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.6841999},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.6827915},{"id":"https://openalex.org/C73555534","wikidata":"https://www.wikidata.org/wiki/Q622825","display_name":"Cluster analysis","level":2,"score":0.68038917},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.6679214},{"id":"https://openalex.org/C165064840","wikidata":"https://www.wikidata.org/wiki/Q1321061","display_name":"Matching (statistics)","level":2,"score":0.64401656},{"id":"https://openalex.org/C61265191","wikidata":"https://www.wikidata.org/wiki/Q767770","display_name":"Scale-invariant feature transform","level":3,"score":0.6123185},{"id":"https://openalex.org/C40969351","wikidata":"https://www.wikidata.org/wiki/Q3516228","display_name":"Word error rate","level":2,"score":0.52407926},{"id":"https://openalex.org/C68859911","wikidata":"https://www.wikidata.org/wiki/Q1503724","display_name":"Pattern matching","level":2,"score":0.42118257},{"id":"https://openalex.org/C52622490","wikidata":"https://www.wikidata.org/wiki/Q1026626","display_name":"Feature extraction","level":2,"score":0.41420218},{"id":"https://openalex.org/C31972630","wikidata":"https://www.wikidata.org/wiki/Q844240","display_name":"Computer vision","level":1,"score":0.3781693},{"id":"https://openalex.org/C28490314","wikidata":"https://www.wikidata.org/wiki/Q189436","display_name":"Speech recognition","level":1,"score":0.37416098},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.20253453},{"id":"https://openalex.org/C105795698","wikidata":"https://www.wikidata.org/wiki/Q12483","display_name":"Statistics","level":1,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":true,"landing_page_url":"https://doi.org/10.1109/access.2021.3128273","pdf_url":null,"source":{"id":"https://openalex.org/S2485537415","display_name":"IEEE Access","issn_l":"2169-3536","issn":["2169-3536"],"is_oa":true,"is_in_doaj":true,"is_core":true,"host_organization":"https://openalex.org/P4310319808","host_organization_name":"Institute of Electrical and Electronics Engineers","host_organization_lineage":["https://openalex.org/P4310319808"],"host_organization_lineage_names":["Institute of Electrical and Electronics Engineers"],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},{"is_oa":false,"landing_page_url":"https://doaj.org/article/c7b9dca62bab4abf906f6fdbdfd928fc","pdf_url":null,"source":{"id":"https://openalex.org/S4306401280","display_name":"DOAJ (DOAJ: Directory of Open Access Journals)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"repository"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1109/access.2021.3128273","pdf_url":null,"source":{"id":"https://openalex.org/S2485537415","display_name":"IEEE Access","issn_l":"2169-3536","issn":["2169-3536"],"is_oa":true,"is_in_doaj":true,"is_core":true,"host_organization":"https://openalex.org/P4310319808","host_organization_name":"Institute of Electrical and Electronics Engineers","host_organization_lineage":["https://openalex.org/P4310319808"],"host_organization_lineage_names":["Institute of Electrical and Electronics Engineers"],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},"sustainable_development_goals":[{"id":"https://metadata.un.org/sdg/16","score":0.75,"display_name":"Peace, justice, and strong institutions"}],"grants":[{"funder":"https://openalex.org/F4320321001","funder_display_name":"National Natural Science Foundation of China","award_id":"61573219"},{"funder":"https://openalex.org/F4320321001","funder_display_name":"National Natural Science Foundation of China","award_id":"61701280"}],"datasets":[],"versions":[],"referenced_works_count":39,"referenced_works":["https://openalex.org/W1825382665","https://openalex.org/W191940071","https://openalex.org/W1968944847","https://openalex.org/W1969363409","https://openalex.org/W1970490745","https://openalex.org/W1991620112","https://openalex.org/W1997175872","https://openalex.org/W2004617923","https://openalex.org/W2012126815","https://openalex.org/W2018230213","https://openalex.org/W2023631753","https://openalex.org/W2039004170","https://openalex.org/W2039536345","https://openalex.org/W2053009119","https://openalex.org/W2080562729","https://openalex.org/W2097418325","https://openalex.org/W2102780391","https://openalex.org/W2105055269","https://openalex.org/W2138460174","https://openalex.org/W2140959843","https://openalex.org/W2141717716","https://openalex.org/W2146148372","https://openalex.org/W2153736577","https://openalex.org/W2284457152","https://openalex.org/W2286640670","https://openalex.org/W2552954853","https://openalex.org/W2598954556","https://openalex.org/W2599632008","https://openalex.org/W2751169131","https://openalex.org/W2780667241","https://openalex.org/W2888322626","https://openalex.org/W2919938126","https://openalex.org/W2921209596","https://openalex.org/W2942413398","https://openalex.org/W2945197573","https://openalex.org/W34937552","https://openalex.org/W4246794637","https://openalex.org/W4255569340","https://openalex.org/W67396794"],"related_works":["https://openalex.org/W4286894112","https://openalex.org/W3217252310","https://openalex.org/W3210429500","https://openalex.org/W3034955165","https://openalex.org/W2943461603","https://openalex.org/W2617958085","https://openalex.org/W2247121321","https://openalex.org/W2094920358","https://openalex.org/W2049930962","https://openalex.org/W2041448692"],"abstract_inverted_index":{"Finger":[0],"vein":[1,27,36,72,89,137,183],"recognition":[2,28,37,90,122,138,282],"has":[3],"been":[4],"proven":[5],"to":[6,99,118,148,176,185,208,292],"be":[7,92,100],"an":[8],"effective":[9],"pattern":[10,73],"for":[11],"personal":[12],"versification":[13],"in":[14,77,268],"terms":[15],"of":[16,25,34,87,105,180,193,197,202,212,231,248,255,264,301],"its":[17],"convenience":[18],"and":[19,38,45,115,129,240,257,277,279,286,296],"security.":[20],"However,":[21],"the":[22,31,40,46,54,60,68,70,84,95,103,112,125,163,181,187,194,209,223,229,245,249,253,262,265,280,293,299,302],"existing":[23],"works":[24],"finger":[26,35,71,88,136,182],"have":[29],"neglected":[30],"application":[32],"scenarios":[33],"treated":[39],"false":[41,47],"acceptance":[42],"rate":[43,49,57],"(FAR)":[44],"rejection":[48],"(FRR)":[50],"equally,":[51],"i.e.,":[52,94],"utilized":[53,161],"equal":[55],"error":[56],"(EER)":[58],"as":[59,162,228],"main":[61],"evaluation":[62],"criterion.":[63],"As":[64],"structures":[65],"hidden":[66],"beneath":[67],"skin,":[69],"is":[74,97,146,160,173,226],"usually":[75],"applied":[76],"access":[78],"controls":[79],"rather":[80],"than":[81],"forensics.":[82],"Hence,":[83],"security":[85,121,151,270],"requirement":[86],"should":[91],"high,":[93],"FRR":[96],"assumed":[98],"reduced":[101],"under":[102],"premise":[104],"extremely":[106],"low":[107],"FAR.":[108],"In":[109,132],"our":[110],"opinion,":[111],"important":[113],"points":[114],"difficulties":[116],"related":[117],"achieving":[119],"high":[120,150,269],"are":[123,205,275,284,290],"enlarging":[124],"differences":[126],"between":[127],"genuine":[128],"imposter":[130],"matchings.":[131],"this":[133],"paper,":[134],"a":[135,167,217],"framework":[139],"based":[140],"on":[141,238],"robust":[142],"keypoint":[143],"correspondence":[144,199],"clustering":[145,220],"proposed":[147,250,266,303],"achieve":[149],"recognition.":[152],"A":[153],"scale-invariant":[154],"feature":[155],"transform":[156],"(SIFT)":[157],"descriptor-based":[158],"method":[159,267],"base":[164],"recognizer.":[165],"Then,":[166],"multi-input":[168],"multi-output":[169],"(MIMO)":[170],"matching":[171,188,195,201,214,224,232],"structure":[172],"designed":[174],"according":[175,207],"different":[177],"physical":[178],"characteristics":[179],"images":[184],"enhance":[186],"possibilities.":[189],"After":[190],"that,":[191],"integrations":[192],"pairs":[196,233],"each":[198,213],"(i.e.,":[200],"two":[203],"images)":[204],"clustered":[206],"deformation":[210],"information":[211],"pair":[215],"by":[216],"novel":[218],"simulated":[219],"technique.":[221],"Finally,":[222],"score":[225],"defined":[227],"number":[230],"after":[234],"clustering.":[235],"Extensive":[236],"experiments":[237],"HKPU":[239],"FV-SDUMLA-HMT":[241],"open":[242],"databases":[243],"demonstrate":[244],"superior":[246],"performance":[247],"method,":[251],"with":[252],"FRRs-at-0-FAR":[254],"0.0139":[256],"0.2377,":[258],"respectively,":[259,288],"which":[260,289],"imply":[261],"applicability":[263],"scenarios.":[271],"The":[272],"corresponding":[273],"EERs":[274],"0.0015":[276],"0.0139,":[278],"rank-one":[281],"rates":[283],"99.91%":[285],"97.54%,":[287],"comparable":[291],"state-of-the-art":[294],"methods":[295],"further":[297],"indicate":[298],"effectiveness":[300],"method.":[304]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W3214320970","counts_by_year":[{"year":2023,"cited_by_count":2},{"year":2022,"cited_by_count":1}],"updated_date":"2024-12-07T22:18:09.312967","created_date":"2021-11-22"}