{"id":"https://openalex.org/W3203782569","doi":"https://doi.org/10.1109/access.2021.3116265","title":"Training on Polar Image Transformations Improves Biomedical Image Segmentation","display_name":"Training on Polar Image Transformations Improves Biomedical Image Segmentation","publication_year":2021,"publication_date":"2021-01-01","ids":{"openalex":"https://openalex.org/W3203782569","doi":"https://doi.org/10.1109/access.2021.3116265","mag":"3203782569"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1109/access.2021.3116265","pdf_url":null,"source":{"id":"https://openalex.org/S2485537415","display_name":"IEEE Access","issn_l":"2169-3536","issn":["2169-3536"],"is_oa":true,"is_in_doaj":true,"is_core":true,"host_organization":"https://openalex.org/P4310319808","host_organization_name":"Institute of Electrical and Electronics Engineers","host_organization_lineage":["https://openalex.org/P4310319808"],"host_organization_lineage_names":["Institute of Electrical and Electronics Engineers"],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},"type":"article","type_crossref":"journal-article","indexed_in":["crossref","doaj"],"open_access":{"is_oa":true,"oa_status":"gold","oa_url":"https://doi.org/10.1109/access.2021.3116265","any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5027152185","display_name":"Marin Ben\u010devi\u0107","orcid":"https://orcid.org/0000-0003-4294-0781"},"institutions":[{"id":"https://openalex.org/I51314090","display_name":"University of Osijek","ror":"https://ror.org/05sw4wc49","country_code":"HR","type":"education","lineage":["https://openalex.org/I51314090"]}],"countries":["HR"],"is_corresponding":false,"raw_author_name":"Marin Bencevic","raw_affiliation_strings":["Faculty of Electrical Engineering, Computer Science and Information Technology, J. J. Strossmayer University of Osijek, Osijek, Croatia"],"affiliations":[{"raw_affiliation_string":"Faculty of Electrical Engineering, Computer Science and Information Technology, J. J. Strossmayer University of Osijek, Osijek, Croatia","institution_ids":["https://openalex.org/I51314090"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5083837803","display_name":"Irena Gali\u0107","orcid":"https://orcid.org/0000-0002-0211-4568"},"institutions":[{"id":"https://openalex.org/I51314090","display_name":"University of Osijek","ror":"https://ror.org/05sw4wc49","country_code":"HR","type":"education","lineage":["https://openalex.org/I51314090"]}],"countries":["HR"],"is_corresponding":false,"raw_author_name":"Irena Galic","raw_affiliation_strings":["Faculty of Electrical Engineering, Computer Science and Information Technology, J. J. Strossmayer University of Osijek, Osijek, Croatia"],"affiliations":[{"raw_affiliation_string":"Faculty of Electrical Engineering, Computer Science and Information Technology, J. J. Strossmayer University of Osijek, Osijek, Croatia","institution_ids":["https://openalex.org/I51314090"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5055227189","display_name":"Marija Habijan","orcid":"https://orcid.org/0000-0002-3754-498X"},"institutions":[{"id":"https://openalex.org/I51314090","display_name":"University of Osijek","ror":"https://ror.org/05sw4wc49","country_code":"HR","type":"education","lineage":["https://openalex.org/I51314090"]}],"countries":["HR"],"is_corresponding":false,"raw_author_name":"Marija Habijan","raw_affiliation_strings":["Faculty of Electrical Engineering, Computer Science and Information Technology, J. J. Strossmayer University of Osijek, Osijek, Croatia"],"affiliations":[{"raw_affiliation_string":"Faculty of Electrical Engineering, Computer Science and Information Technology, J. J. Strossmayer University of Osijek, Osijek, Croatia","institution_ids":["https://openalex.org/I51314090"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5068395991","display_name":"Danilo Babin","orcid":"https://orcid.org/0000-0002-2881-6760"},"institutions":[{"id":"https://openalex.org/I32597200","display_name":"Ghent University","ror":"https://ror.org/00cv9y106","country_code":"BE","type":"education","lineage":["https://openalex.org/I32597200"]}],"countries":["BE"],"is_corresponding":false,"raw_author_name":"Danilo Babin","raw_affiliation_strings":["imec-TELIN-IPI, Faculty of Engineering and Architecture, Ghent University, Ghent, Belgium"],"affiliations":[{"raw_affiliation_string":"imec-TELIN-IPI, Faculty of Engineering and Architecture, Ghent University, Ghent, Belgium","institution_ids":["https://openalex.org/I32597200"]}]}],"institution_assertions":[],"countries_distinct_count":2,"institutions_distinct_count":2,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":{"value":1850,"currency":"USD","value_usd":1850,"provenance":"doaj"},"apc_paid":{"value":1850,"currency":"USD","value_usd":1850,"provenance":"doaj"},"fwci":6.808,"has_fulltext":true,"fulltext_origin":"pdf","cited_by_count":47,"citation_normalized_percentile":{"value":0.779317,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":97,"max":98},"biblio":{"volume":"9","issue":null,"first_page":"133365","last_page":"133375"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T12422","display_name":"Radiomics and Machine Learning in Medical Imaging","score":0.9986,"subfield":{"id":"https://openalex.org/subfields/2741","display_name":"Radiology, Nuclear Medicine and Imaging"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}},"topics":[{"id":"https://openalex.org/T12422","display_name":"Radiomics and Machine Learning in Medical Imaging","score":0.9986,"subfield":{"id":"https://openalex.org/subfields/2741","display_name":"Radiology, Nuclear Medicine and Imaging"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}},{"id":"https://openalex.org/T10036","display_name":"Advanced Neural Network Applications","score":0.984,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11775","display_name":"COVID-19 diagnosis using AI","score":0.9775,"subfield":{"id":"https://openalex.org/subfields/2741","display_name":"Radiology, Nuclear Medicine and Imaging"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/segmentation-based-object-categorization","display_name":"Segmentation-based object categorization","score":0.48465973},{"id":"https://openalex.org/keywords/feature","display_name":"Feature (linguistics)","score":0.4298928}],"concepts":[{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.7902889},{"id":"https://openalex.org/C89600930","wikidata":"https://www.wikidata.org/wiki/Q1423946","display_name":"Segmentation","level":2,"score":0.7843421},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.7295691},{"id":"https://openalex.org/C124504099","wikidata":"https://www.wikidata.org/wiki/Q56933","display_name":"Image segmentation","level":3,"score":0.62174726},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.6023179},{"id":"https://openalex.org/C65885262","wikidata":"https://www.wikidata.org/wiki/Q7429708","display_name":"Scale-space segmentation","level":4,"score":0.58044934},{"id":"https://openalex.org/C31972630","wikidata":"https://www.wikidata.org/wiki/Q844240","display_name":"Computer vision","level":1,"score":0.566416},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.5060424},{"id":"https://openalex.org/C25694479","wikidata":"https://www.wikidata.org/wiki/Q7446278","display_name":"Segmentation-based object categorization","level":5,"score":0.48465973},{"id":"https://openalex.org/C2776401178","wikidata":"https://www.wikidata.org/wiki/Q12050496","display_name":"Feature (linguistics)","level":2,"score":0.4298928},{"id":"https://openalex.org/C108583219","wikidata":"https://www.wikidata.org/wiki/Q197536","display_name":"Deep learning","level":2,"score":0.4241774},{"id":"https://openalex.org/C41895202","wikidata":"https://www.wikidata.org/wiki/Q8162","display_name":"Linguistics","level":1,"score":0.0},{"id":"https://openalex.org/C138885662","wikidata":"https://www.wikidata.org/wiki/Q5891","display_name":"Philosophy","level":0,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":true,"landing_page_url":"https://doi.org/10.1109/access.2021.3116265","pdf_url":null,"source":{"id":"https://openalex.org/S2485537415","display_name":"IEEE Access","issn_l":"2169-3536","issn":["2169-3536"],"is_oa":true,"is_in_doaj":true,"is_core":true,"host_organization":"https://openalex.org/P4310319808","host_organization_name":"Institute of Electrical and Electronics Engineers","host_organization_lineage":["https://openalex.org/P4310319808"],"host_organization_lineage_names":["Institute of Electrical and Electronics Engineers"],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},{"is_oa":false,"landing_page_url":"https://doaj.org/article/9eeafdf7a8e247d48399df20cc01f273","pdf_url":null,"source":{"id":"https://openalex.org/S4306401280","display_name":"DOAJ (DOAJ: Directory of Open Access Journals)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"repository"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1109/access.2021.3116265","pdf_url":null,"source":{"id":"https://openalex.org/S2485537415","display_name":"IEEE Access","issn_l":"2169-3536","issn":["2169-3536"],"is_oa":true,"is_in_doaj":true,"is_core":true,"host_organization":"https://openalex.org/P4310319808","host_organization_name":"Institute of Electrical and Electronics Engineers","host_organization_lineage":["https://openalex.org/P4310319808"],"host_organization_lineage_names":["Institute of Electrical and Electronics Engineers"],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},"sustainable_development_goals":[],"grants":[{"funder":"https://openalex.org/F4320322674","funder_display_name":"Hrvatska Zaklada za Znanost","award_id":"UIP-2017-05-4968"}],"datasets":[],"versions":[],"referenced_works_count":32,"referenced_works":["https://openalex.org/W1856792630","https://openalex.org/W1901129140","https://openalex.org/W2008359794","https://openalex.org/W2194775991","https://openalex.org/W2307770531","https://openalex.org/W2752782242","https://openalex.org/W2790564346","https://openalex.org/W2884436604","https://openalex.org/W2892259504","https://openalex.org/W2910094941","https://openalex.org/W2928133111","https://openalex.org/W2937774478","https://openalex.org/W2962744952","https://openalex.org/W2963420686","https://openalex.org/W2963564809","https://openalex.org/W2963946669","https://openalex.org/W2964309882","https://openalex.org/W2979515228","https://openalex.org/W2987039128","https://openalex.org/W2987175876","https://openalex.org/W3040786357","https://openalex.org/W3044330909","https://openalex.org/W3081752372","https://openalex.org/W3090974769","https://openalex.org/W3092344722","https://openalex.org/W3099319035","https://openalex.org/W3102785203","https://openalex.org/W3124994365","https://openalex.org/W3148874463","https://openalex.org/W4293362962","https://openalex.org/W4309233581","https://openalex.org/W603908379"],"related_works":["https://openalex.org/W4205800335","https://openalex.org/W3144569342","https://openalex.org/W2945274617","https://openalex.org/W2386644571","https://openalex.org/W2372421320","https://openalex.org/W2371519352","https://openalex.org/W2185902295","https://openalex.org/W2103507220","https://openalex.org/W2055202857","https://openalex.org/W1986655823"],"abstract_inverted_index":{"A":[0,10],"key":[1],"step":[2],"in":[3,137],"medical":[4,15,55,91],"image-based":[5],"diagnosis":[6],"is":[7,18,98,128],"image":[8,16,56,234],"segmentation.":[9,208,235],"common":[11,228],"use":[12],"case":[13],"for":[14,125,217,232],"segmentation":[17,57,85,93,148,175,222],"the":[19,31,96,117,122,126,129,133,153,189,197],"identification":[20],"of":[21,24,48,64,116,132,140,147,199],"single":[22,102],"structures":[23],"an":[25,167],"elliptical":[26],"shape.":[27],"Most":[28],"organs":[29],"like":[30],"heart":[32],"and":[33,45,67,87,149,180,204,220,223,251],"kidneys":[34],"fall":[35],"into":[36],"this":[37,74],"category,":[38],"as":[39,41,142,144,239],"well":[40,143],"skin":[42,202],"lesions,":[43],"polyps,":[44],"other":[46],"types":[47],"abnormalities.":[49],"Neural":[50],"networks":[51],"have":[52],"dramatically":[53],"improved":[54],"results,":[58],"but":[59],"still":[60],"require":[61],"large":[62],"amounts":[63],"training":[65,69,109],"data":[66,88,247],"long":[68],"times":[70],"to":[71,81,99,155,165,187],"converge.":[72,158],"In":[73],"paper,":[75],"we":[76,160],"propose":[77,108,161],"a":[78,101,110,138,145,174,184,240],"general":[79],"way":[80],"improve":[82],"neural":[83,111,229,252],"network":[84,112,154,230,253],"performance":[86],"efficiency":[89,248],"on":[90,113,177,196],"imaging":[92],"tasks":[94,198],"where":[95],"goal":[97],"segment":[100],"roughly":[103],"elliptically":[104],"distributed":[105],"object.":[106,134],"We":[107,192,209],"polar":[114,123,169],"transformations":[115],"original":[118],"dataset,":[119],"such":[120],"that":[121,211],"origin":[124],"transformation":[127],"center":[130],"point":[131],"This":[135],"results":[136,216],"reduction":[139],"dimensionality":[141],"separation":[146],"localization":[150],"tasks,":[151],"allowing":[152],"more":[156],"easily":[157],"Additionally,":[159,236],"two":[162],"different":[163],"approaches":[164],"obtaining":[166],"optimal":[168,190],"origin:":[170],"(1)":[171],"estimation":[172,182],"via":[173,183],"trained":[176,186],"non-polar":[178],"images":[179],"(2)":[181],"model":[185],"predict":[188],"origin.":[191],"evaluate":[193],"our":[194,212,243],"method":[195,213,244],"liver,":[200,219],"polyp,":[201],"lesion,":[203,218],"epicardial":[205],"adipose":[206],"tissue":[207],"show":[210],"produces":[214],"state-of-the-art":[215],"polyp":[221],"performs":[224],"better":[225],"than":[226],"most":[227],"architectures":[231],"biomedical":[233],"when":[237],"used":[238],"pre-processing":[241],"step,":[242],"generally":[245],"improves":[246],"across":[249],"datasets":[250],"architectures.":[254]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W3203782569","counts_by_year":[{"year":2024,"cited_by_count":18},{"year":2023,"cited_by_count":19},{"year":2022,"cited_by_count":9}],"updated_date":"2024-12-10T08:09:01.446995","created_date":"2021-10-11"}