{"id":"https://openalex.org/W3170460401","doi":"https://doi.org/10.1109/access.2021.3089597","title":"Correct and Crisp Edge Detection Approach Based on Dense Network","display_name":"Correct and Crisp Edge Detection Approach Based on Dense Network","publication_year":2021,"publication_date":"2021-06-15","ids":{"openalex":"https://openalex.org/W3170460401","doi":"https://doi.org/10.1109/access.2021.3089597","mag":"3170460401"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1109/access.2021.3089597","pdf_url":"https://ieeexplore.ieee.org/ielx7/6287639/10005208/09455396.pdf","source":{"id":"https://openalex.org/S2485537415","display_name":"IEEE Access","issn_l":"2169-3536","issn":["2169-3536"],"is_oa":true,"is_in_doaj":true,"is_core":true,"host_organization":"https://openalex.org/P4310319808","host_organization_name":"Institute of Electrical and Electronics Engineers","host_organization_lineage":["https://openalex.org/P4310319808"],"host_organization_lineage_names":["Institute of Electrical and Electronics Engineers"],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},"type":"article","type_crossref":"journal-article","indexed_in":["crossref"],"open_access":{"is_oa":true,"oa_status":"gold","oa_url":"https://ieeexplore.ieee.org/ielx7/6287639/10005208/09455396.pdf","any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5101482100","display_name":"Xiaohua Li","orcid":"https://orcid.org/0000-0001-5837-2470"},"institutions":[{"id":"https://openalex.org/I96908189","display_name":"Xinjiang University","ror":"https://ror.org/059gw8r13","country_code":"CN","type":"education","lineage":["https://openalex.org/I96908189"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Xiaohua Li","raw_affiliation_strings":["College of Information Science and Engineering, Xinjiang University, Urumqi, China"],"affiliations":[{"raw_affiliation_string":"College of Information Science and Engineering, Xinjiang University, Urumqi, China","institution_ids":["https://openalex.org/I96908189"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5013570376","display_name":"Guangxiao Niu","orcid":null},"institutions":[{"id":"https://openalex.org/I150229711","display_name":"University of Electronic Science and Technology of China","ror":"https://ror.org/04qr3zq92","country_code":"CN","type":"education","lineage":["https://openalex.org/I150229711"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Guangxiao Niu","raw_affiliation_strings":["Computer Science and Engineering College, University of Electronic Science and Technology of China, Chengdu, China"],"affiliations":[{"raw_affiliation_string":"Computer Science and Engineering College, University of Electronic Science and Technology of China, Chengdu, China","institution_ids":["https://openalex.org/I150229711"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5101584026","display_name":"Xiangxiang Li","orcid":"https://orcid.org/0009-0003-8143-087X"},"institutions":[{"id":"https://openalex.org/I96908189","display_name":"Xinjiang University","ror":"https://ror.org/059gw8r13","country_code":"CN","type":"education","lineage":["https://openalex.org/I96908189"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Xiangxiang Li","raw_affiliation_strings":["College of Information Science and Engineering, Xinjiang University, Urumqi, China"],"affiliations":[{"raw_affiliation_string":"College of Information Science and Engineering, Xinjiang University, Urumqi, China","institution_ids":["https://openalex.org/I96908189"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100456897","display_name":"Xiaoli Wang","orcid":"https://orcid.org/0000-0002-1995-1178"},"institutions":[{"id":"https://openalex.org/I96908189","display_name":"Xinjiang University","ror":"https://ror.org/059gw8r13","country_code":"CN","type":"education","lineage":["https://openalex.org/I96908189"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Xiaoli Wang","raw_affiliation_strings":["College of Information Science and Engineering, Xinjiang University, Urumqi, China"],"affiliations":[{"raw_affiliation_string":"College of Information Science and Engineering, Xinjiang University, Urumqi, China","institution_ids":["https://openalex.org/I96908189"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5052985508","display_name":"Gang Shi","orcid":"https://orcid.org/0000-0002-5963-5639"},"institutions":[{"id":"https://openalex.org/I96908189","display_name":"Xinjiang University","ror":"https://ror.org/059gw8r13","country_code":"CN","type":"education","lineage":["https://openalex.org/I96908189"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Gang Shi","raw_affiliation_strings":["College of Information Science and Engineering, Xinjiang University, Urumqi, China"],"affiliations":[{"raw_affiliation_string":"College of Information Science and Engineering, Xinjiang University, Urumqi, China","institution_ids":["https://openalex.org/I96908189"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":2,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":{"value":1850,"currency":"USD","value_usd":1850,"provenance":"doaj"},"apc_paid":{"value":1850,"currency":"USD","value_usd":1850,"provenance":"doaj"},"fwci":0.419,"has_fulltext":true,"fulltext_origin":"pdf","cited_by_count":3,"citation_normalized_percentile":{"value":0.519823,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":72,"max":76},"biblio":{"volume":"11","issue":null,"first_page":"20940","last_page":"20951"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T12111","display_name":"Industrial Vision Systems and Defect Detection","score":0.9983,"subfield":{"id":"https://openalex.org/subfields/2209","display_name":"Industrial and Manufacturing Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T12111","display_name":"Industrial Vision Systems and Defect Detection","score":0.9983,"subfield":{"id":"https://openalex.org/subfields/2209","display_name":"Industrial and Manufacturing Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10036","display_name":"Advanced Neural Network Applications","score":0.998,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12549","display_name":"Image and Object Detection Techniques","score":0.9977,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/convolution","display_name":"Convolution (computer science)","score":0.6358056},{"id":"https://openalex.org/keywords/feature","display_name":"Feature (linguistics)","score":0.5132694}],"concepts":[{"id":"https://openalex.org/C55439883","wikidata":"https://www.wikidata.org/wiki/Q360812","display_name":"Correctness","level":2,"score":0.85448146},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.7930751},{"id":"https://openalex.org/C162307627","wikidata":"https://www.wikidata.org/wiki/Q204833","display_name":"Enhanced Data Rates for GSM Evolution","level":2,"score":0.6623154},{"id":"https://openalex.org/C45347329","wikidata":"https://www.wikidata.org/wiki/Q5166604","display_name":"Convolution (computer science)","level":3,"score":0.6358056},{"id":"https://openalex.org/C193536780","wikidata":"https://www.wikidata.org/wiki/Q1513153","display_name":"Edge detection","level":4,"score":0.59304345},{"id":"https://openalex.org/C81363708","wikidata":"https://www.wikidata.org/wiki/Q17084460","display_name":"Convolutional neural network","level":2,"score":0.5351219},{"id":"https://openalex.org/C2776401178","wikidata":"https://www.wikidata.org/wiki/Q12050496","display_name":"Feature (linguistics)","level":2,"score":0.5132694},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.51313573},{"id":"https://openalex.org/C98045186","wikidata":"https://www.wikidata.org/wiki/Q205663","display_name":"Process (computing)","level":2,"score":0.50931084},{"id":"https://openalex.org/C2777735758","wikidata":"https://www.wikidata.org/wiki/Q817765","display_name":"Path (computing)","level":2,"score":0.5031025},{"id":"https://openalex.org/C2777303404","wikidata":"https://www.wikidata.org/wiki/Q759757","display_name":"Convergence (economics)","level":2,"score":0.49456713},{"id":"https://openalex.org/C177264268","wikidata":"https://www.wikidata.org/wiki/Q1514741","display_name":"Set (abstract data type)","level":2,"score":0.4862965},{"id":"https://openalex.org/C115961682","wikidata":"https://www.wikidata.org/wiki/Q860623","display_name":"Image (mathematics)","level":2,"score":0.44775718},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.43359825},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.41711566},{"id":"https://openalex.org/C31972630","wikidata":"https://www.wikidata.org/wiki/Q844240","display_name":"Computer vision","level":1,"score":0.3892554},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.37791547},{"id":"https://openalex.org/C9417928","wikidata":"https://www.wikidata.org/wiki/Q1070689","display_name":"Image processing","level":3,"score":0.37587112},{"id":"https://openalex.org/C41895202","wikidata":"https://www.wikidata.org/wiki/Q8162","display_name":"Linguistics","level":1,"score":0.0},{"id":"https://openalex.org/C138885662","wikidata":"https://www.wikidata.org/wiki/Q5891","display_name":"Philosophy","level":0,"score":0.0},{"id":"https://openalex.org/C50522688","wikidata":"https://www.wikidata.org/wiki/Q189833","display_name":"Economic growth","level":1,"score":0.0},{"id":"https://openalex.org/C162324750","wikidata":"https://www.wikidata.org/wiki/Q8134","display_name":"Economics","level":0,"score":0.0},{"id":"https://openalex.org/C199360897","wikidata":"https://www.wikidata.org/wiki/Q9143","display_name":"Programming language","level":1,"score":0.0},{"id":"https://openalex.org/C111919701","wikidata":"https://www.wikidata.org/wiki/Q9135","display_name":"Operating system","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":true,"landing_page_url":"https://doi.org/10.1109/access.2021.3089597","pdf_url":"https://ieeexplore.ieee.org/ielx7/6287639/10005208/09455396.pdf","source":{"id":"https://openalex.org/S2485537415","display_name":"IEEE Access","issn_l":"2169-3536","issn":["2169-3536"],"is_oa":true,"is_in_doaj":true,"is_core":true,"host_organization":"https://openalex.org/P4310319808","host_organization_name":"Institute of Electrical and Electronics Engineers","host_organization_lineage":["https://openalex.org/P4310319808"],"host_organization_lineage_names":["Institute of Electrical and Electronics Engineers"],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1109/access.2021.3089597","pdf_url":"https://ieeexplore.ieee.org/ielx7/6287639/10005208/09455396.pdf","source":{"id":"https://openalex.org/S2485537415","display_name":"IEEE Access","issn_l":"2169-3536","issn":["2169-3536"],"is_oa":true,"is_in_doaj":true,"is_core":true,"host_organization":"https://openalex.org/P4310319808","host_organization_name":"Institute of Electrical and Electronics Engineers","host_organization_lineage":["https://openalex.org/P4310319808"],"host_organization_lineage_names":["Institute of Electrical and Electronics Engineers"],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},"sustainable_development_goals":[],"grants":[{"funder":"https://openalex.org/F4320311028","funder_display_name":"Natural Science Foundation of Xinjiang Province","award_id":"2018D01C036"}],"datasets":[],"versions":[],"referenced_works_count":49,"referenced_works":["https://openalex.org/W105270443","https://openalex.org/W1499677203","https://openalex.org/W1518636435","https://openalex.org/W1539790486","https://openalex.org/W1686810756","https://openalex.org/W1842610785","https://openalex.org/W1903029394","https://openalex.org/W1910619957","https://openalex.org/W1923697677","https://openalex.org/W1930528368","https://openalex.org/W1976047850","https://openalex.org/W1977772461","https://openalex.org/W2016396776","https://openalex.org/W2053197265","https://openalex.org/W2064543782","https://openalex.org/W2097117768","https://openalex.org/W2107333657","https://openalex.org/W2119823327","https://openalex.org/W2121947440","https://openalex.org/W2128370471","https://openalex.org/W2133515615","https://openalex.org/W2145023731","https://openalex.org/W2151049637","https://openalex.org/W2155487652","https://openalex.org/W2161567010","https://openalex.org/W2165914352","https://openalex.org/W2174127440","https://openalex.org/W2174657536","https://openalex.org/W2194775991","https://openalex.org/W2264620161","https://openalex.org/W2289871033","https://openalex.org/W2395611524","https://openalex.org/W2476548250","https://openalex.org/W2483076098","https://openalex.org/W2519788000","https://openalex.org/W2531409750","https://openalex.org/W2560622558","https://openalex.org/W2588503511","https://openalex.org/W2607333215","https://openalex.org/W2618530766","https://openalex.org/W2740400853","https://openalex.org/W2883254424","https://openalex.org/W2953881420","https://openalex.org/W2963446712","https://openalex.org/W3003376220","https://openalex.org/W3009158303","https://openalex.org/W3087221416","https://openalex.org/W3101839051","https://openalex.org/W4241071816"],"related_works":["https://openalex.org/W4312417841","https://openalex.org/W3042897387","https://openalex.org/W2763966779","https://openalex.org/W2331674254","https://openalex.org/W2295021132","https://openalex.org/W2167293474","https://openalex.org/W2048505601","https://openalex.org/W2045615376","https://openalex.org/W2017205855","https://openalex.org/W1504288058"],"abstract_inverted_index":{"Edge":[0],"detection":[1,17,35,163],"is":[2,18,74,82,198],"a":[3,63,67,78,91],"basic":[4],"problem":[5],"in":[6,26,108,134,161],"computer":[7],"vision":[8],"and":[9,46,100,126,153,165,169,177,194],"image":[10],"processing.":[11],"The":[12,72,96,111,147],"main":[13],"purpose":[14],"of":[15,39,48,90,116,155,171],"edge":[16],"to":[19,56],"identify":[20],"points":[21],"with":[22,85,181],"obvious":[23],"brightness":[24],"changes":[25],"digital":[27],"images.":[28],"At":[29],"present,":[30],"there":[31],"are":[32],"many":[33],"good":[34],"methods,":[36],"but":[37],"most":[38],"them":[40],"do":[41],"not":[42],"consider":[43],"the":[44,51,86,102,117,122,135,140,143,151,156,162,166,182,185,189,195],"correctness":[45,152],"crispness":[47,154],"edges":[49,157],"at":[50],"same":[52],"time.":[53],"In":[54],"order":[55],"address":[57],"this":[58,60,172],"problem,":[59],"paper":[61],"proposes":[62],"method":[64,73,141,173,187],"based":[65,76],"on":[66,77,142],"deep":[68],"convolution":[69],"neural":[70],"network.":[71],"mainly":[75],"dense":[79],"network":[80,88],"that":[81,121,150],"then":[83],"combined":[84],"single":[87],"structure":[89],"backward":[92],"refinement":[93],"path":[94],"module.":[95],"former":[97],"can":[98,130,158],"detect":[99],"retain":[101],"feature":[103],"information":[104,119],"between":[105],"different":[106],"layers":[107],"an":[109],"image.":[110],"latter":[112],"makes":[113],"full":[114],"use":[115],"extracted":[118],"so":[120],"low-level":[123],"detail":[124],"features":[125,129],"high-level":[127],"abstract":[128],"be":[131,159],"better":[132],"integrated":[133],"final":[136],"output.":[137],"We":[138],"tested":[139],"BIPED":[144],"data":[145],"set.":[146],"results":[148],"show":[149],"balanced":[160],"process,":[164],"ODS,":[167],"OIS":[168],"AP":[170],"reach":[174],"0.888,":[175],"0.893":[176],"0.916,":[178],"respectively.":[179],"Compared":[180],"state-of-the-art":[183],"approaches,":[184],"proposed":[186],"improves":[188],"standard":[190],"evaluation":[191],"by":[192],"3%-5%,":[193],"convergence":[196],"speed":[197],"also":[199],"significantly":[200],"improved.":[201]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W3170460401","counts_by_year":[{"year":2022,"cited_by_count":3}],"updated_date":"2024-12-10T05:29:01.691949","created_date":"2021-06-22"}