{"id":"https://openalex.org/W3118490356","doi":"https://doi.org/10.1109/access.2021.3050852","title":"A Novel Bayesian Optimization-Based Machine Learning Framework for COVID-19 Detection From Inpatient Facility Data","display_name":"A Novel Bayesian Optimization-Based Machine Learning Framework for COVID-19 Detection From Inpatient Facility Data","publication_year":2021,"publication_date":"2021-01-01","ids":{"openalex":"https://openalex.org/W3118490356","doi":"https://doi.org/10.1109/access.2021.3050852","mag":"3118490356","pmid":"https://pubmed.ncbi.nlm.nih.gov/34786301","pmcid":"https://www.ncbi.nlm.nih.gov/pmc/articles/8545233"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1109/access.2021.3050852","pdf_url":"https://ieeexplore.ieee.org/ielx7/6287639/9312710/09319642.pdf","source":{"id":"https://openalex.org/S2485537415","display_name":"IEEE Access","issn_l":"2169-3536","issn":["2169-3536"],"is_oa":true,"is_in_doaj":true,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310319808","host_organization_name":"Institute of Electrical and Electronics Engineers","host_organization_lineage":["https://openalex.org/P4310319808"],"host_organization_lineage_names":["Institute of Electrical and Electronics Engineers"],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},"type":"article","type_crossref":"journal-article","indexed_in":["crossref","pubmed"],"open_access":{"is_oa":true,"oa_status":"gold","oa_url":"https://ieeexplore.ieee.org/ielx7/6287639/9312710/09319642.pdf","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5101540530","display_name":"Md. Abdul Awal","orcid":"https://orcid.org/0000-0003-3028-4932"},"institutions":[{"id":"https://openalex.org/I124386471","display_name":"Khulna University","ror":"https://ror.org/05pny7s12","country_code":"BD","type":"education","lineage":["https://openalex.org/I124386471"]}],"countries":["BD"],"is_corresponding":false,"raw_author_name":"Md. Abdul Awal","raw_affiliation_strings":["Electronics and Communication Engineering Discipline, Khulna University, Khulna, Bangladesh"],"affiliations":[{"raw_affiliation_string":"Electronics and Communication Engineering Discipline, Khulna University, Khulna, Bangladesh","institution_ids":["https://openalex.org/I124386471"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5045359397","display_name":"Mehedi Masud","orcid":"https://orcid.org/0000-0001-6019-7245"},"institutions":[{"id":"https://openalex.org/I179331831","display_name":"Taif University","ror":"https://ror.org/014g1a453","country_code":"SA","type":"education","lineage":["https://openalex.org/I179331831"]}],"countries":["SA"],"is_corresponding":false,"raw_author_name":"Mehedi Masud","raw_affiliation_strings":["Department of Computer Science, College of Computers and Information Technology, Taif University, Taif, Saudi Arabia"],"affiliations":[{"raw_affiliation_string":"Department of Computer Science, College of Computers and Information Technology, Taif University, Taif, Saudi Arabia","institution_ids":["https://openalex.org/I179331831"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100675152","display_name":"Md. Shahadat Hossain","orcid":"https://orcid.org/0000-0002-1368-7230"},"institutions":[{"id":"https://openalex.org/I4210132231","display_name":"International University of Business Agriculture and Technology","ror":"https://ror.org/02m32cr13","country_code":"BD","type":"education","lineage":["https://openalex.org/I4210132231"]}],"countries":["BD"],"is_corresponding":false,"raw_author_name":"Md. Shahadat Hossain","raw_affiliation_strings":["Department of Quantitative Sciences, International University of Business Agriculture and Technology, Dhaka, Bangladesh"],"affiliations":[{"raw_affiliation_string":"Department of Quantitative Sciences, International University of Business Agriculture and Technology, Dhaka, Bangladesh","institution_ids":["https://openalex.org/I4210132231"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5020616254","display_name":"Abdullah Al-Mamun Bulbul","orcid":"https://orcid.org/0000-0002-5652-2065"},"institutions":[{"id":"https://openalex.org/I124386471","display_name":"Khulna University","ror":"https://ror.org/05pny7s12","country_code":"BD","type":"education","lineage":["https://openalex.org/I124386471"]}],"countries":["BD"],"is_corresponding":false,"raw_author_name":"Abdullah Al-Mamun Bulbul","raw_affiliation_strings":["Electronics and Communication Engineering Discipline, Khulna University, Khulna, Bangladesh"],"affiliations":[{"raw_affiliation_string":"Electronics and Communication Engineering Discipline, Khulna University, Khulna, Bangladesh","institution_ids":["https://openalex.org/I124386471"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5001933676","display_name":"Saifuddin Mahmud","orcid":"https://orcid.org/0000-0002-6828-3559"},"institutions":[{"id":"https://openalex.org/I150229711","display_name":"University of Electronic Science and Technology of China","ror":"https://ror.org/04qr3zq92","country_code":"CN","type":"education","lineage":["https://openalex.org/I150229711"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"S. M. Hasan Mahmud","raw_affiliation_strings":["School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China"],"affiliations":[{"raw_affiliation_string":"School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China","institution_ids":["https://openalex.org/I150229711"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5019217199","display_name":"Anupam Kumar Bairagi","orcid":"https://orcid.org/0000-0003-1639-1301"},"institutions":[{"id":"https://openalex.org/I124386471","display_name":"Khulna University","ror":"https://ror.org/05pny7s12","country_code":"BD","type":"education","lineage":["https://openalex.org/I124386471"]}],"countries":["BD"],"is_corresponding":false,"raw_author_name":"Anupam Kumar Bairagi","raw_affiliation_strings":["Computer Science and Engineering Discipline, Khulna University, Khulna, Bangladesh"],"affiliations":[{"raw_affiliation_string":"Computer Science and Engineering Discipline, Khulna University, Khulna, Bangladesh","institution_ids":["https://openalex.org/I124386471"]}]}],"institution_assertions":[],"countries_distinct_count":3,"institutions_distinct_count":4,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":{"value":1850,"currency":"USD","value_usd":1850,"provenance":"doaj"},"apc_paid":{"value":1850,"currency":"USD","value_usd":1850,"provenance":"doaj"},"fwci":9.386,"has_fulltext":true,"fulltext_origin":"pdf","cited_by_count":67,"citation_normalized_percentile":{"value":0.999957,"is_in_top_1_percent":true,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":98,"max":99},"biblio":{"volume":"9","issue":null,"first_page":"10263","last_page":"10281"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11775","display_name":"COVID-19 diagnosis using AI","score":1.0,"subfield":{"id":"https://openalex.org/subfields/2741","display_name":"Radiology, Nuclear Medicine and Imaging"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}},"topics":[{"id":"https://openalex.org/T11775","display_name":"COVID-19 diagnosis using AI","score":1.0,"subfield":{"id":"https://openalex.org/subfields/2741","display_name":"Radiology, Nuclear Medicine and Imaging"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}},{"id":"https://openalex.org/T13702","display_name":"Machine Learning in Healthcare","score":0.997,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11512","display_name":"Anomaly Detection Techniques and Applications","score":0.9953,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/bayesian-optimization","display_name":"Bayesian Optimization","score":0.6723449},{"id":"https://openalex.org/keywords/hyperparameter-optimization","display_name":"Hyperparameter Optimization","score":0.5664603},{"id":"https://openalex.org/keywords/hyperparameter","display_name":"Hyperparameter","score":0.5537558},{"id":"https://openalex.org/keywords/boosting","display_name":"Boosting","score":0.47552803}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.75828797},{"id":"https://openalex.org/C2778049539","wikidata":"https://www.wikidata.org/wiki/Q17002908","display_name":"Bayesian optimization","level":2,"score":0.6723449},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.6353526},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.6217816},{"id":"https://openalex.org/C52001869","wikidata":"https://www.wikidata.org/wiki/Q812530","display_name":"Naive Bayes classifier","level":3,"score":0.6162069},{"id":"https://openalex.org/C169258074","wikidata":"https://www.wikidata.org/wiki/Q245748","display_name":"Random forest","level":2,"score":0.5968571},{"id":"https://openalex.org/C84525736","wikidata":"https://www.wikidata.org/wiki/Q831366","display_name":"Decision tree","level":2,"score":0.59553415},{"id":"https://openalex.org/C10485038","wikidata":"https://www.wikidata.org/wiki/Q48996162","display_name":"Hyperparameter optimization","level":3,"score":0.5664603},{"id":"https://openalex.org/C8642999","wikidata":"https://www.wikidata.org/wiki/Q4171168","display_name":"Hyperparameter","level":2,"score":0.5537558},{"id":"https://openalex.org/C107673813","wikidata":"https://www.wikidata.org/wiki/Q812534","display_name":"Bayesian probability","level":2,"score":0.5459586},{"id":"https://openalex.org/C3008058167","wikidata":"https://www.wikidata.org/wiki/Q84263196","display_name":"Coronavirus disease 2019 (COVID-19)","level":4,"score":0.54047173},{"id":"https://openalex.org/C68781425","wikidata":"https://www.wikidata.org/wiki/Q2052203","display_name":"Multi-objective optimization","level":2,"score":0.4833357},{"id":"https://openalex.org/C46686674","wikidata":"https://www.wikidata.org/wiki/Q466303","display_name":"Boosting (machine learning)","level":2,"score":0.47552803},{"id":"https://openalex.org/C95623464","wikidata":"https://www.wikidata.org/wiki/Q1096149","display_name":"Classifier (UML)","level":2,"score":0.42858136},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.4002367},{"id":"https://openalex.org/C12267149","wikidata":"https://www.wikidata.org/wiki/Q282453","display_name":"Support vector machine","level":2,"score":0.31696856},{"id":"https://openalex.org/C71924100","wikidata":"https://www.wikidata.org/wiki/Q11190","display_name":"Medicine","level":0,"score":0.0},{"id":"https://openalex.org/C2779134260","wikidata":"https://www.wikidata.org/wiki/Q12136","display_name":"Disease","level":2,"score":0.0},{"id":"https://openalex.org/C142724271","wikidata":"https://www.wikidata.org/wiki/Q7208","display_name":"Pathology","level":1,"score":0.0},{"id":"https://openalex.org/C524204448","wikidata":"https://www.wikidata.org/wiki/Q788926","display_name":"Infectious disease (medical specialty)","level":3,"score":0.0}],"mesh":[],"locations_count":3,"locations":[{"is_oa":true,"landing_page_url":"https://doi.org/10.1109/access.2021.3050852","pdf_url":"https://ieeexplore.ieee.org/ielx7/6287639/9312710/09319642.pdf","source":{"id":"https://openalex.org/S2485537415","display_name":"IEEE Access","issn_l":"2169-3536","issn":["2169-3536"],"is_oa":true,"is_in_doaj":true,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310319808","host_organization_name":"Institute of Electrical and Electronics Engineers","host_organization_lineage":["https://openalex.org/P4310319808"],"host_organization_lineage_names":["Institute of Electrical and Electronics Engineers"],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},{"is_oa":true,"landing_page_url":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8545233","pdf_url":null,"source":{"id":"https://openalex.org/S2764455111","display_name":"PubMed Central","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I1299303238","host_organization_name":"National Institutes of Health","host_organization_lineage":["https://openalex.org/I1299303238"],"host_organization_lineage_names":["National Institutes of Health"],"type":"repository"},"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true},{"is_oa":false,"landing_page_url":"https://pubmed.ncbi.nlm.nih.gov/34786301","pdf_url":null,"source":{"id":"https://openalex.org/S4306525036","display_name":"PubMed","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I1299303238","host_organization_name":"National Institutes of Health","host_organization_lineage":["https://openalex.org/I1299303238"],"host_organization_lineage_names":["National Institutes of Health"],"type":"repository"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1109/access.2021.3050852","pdf_url":"https://ieeexplore.ieee.org/ielx7/6287639/9312710/09319642.pdf","source":{"id":"https://openalex.org/S2485537415","display_name":"IEEE Access","issn_l":"2169-3536","issn":["2169-3536"],"is_oa":true,"is_in_doaj":true,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310319808","host_organization_name":"Institute of Electrical and Electronics Engineers","host_organization_lineage":["https://openalex.org/P4310319808"],"host_organization_lineage_names":["Institute of Electrical and Electronics Engineers"],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},"sustainable_development_goals":[{"score":0.81,"display_name":"Good health and well-being","id":"https://metadata.un.org/sdg/3"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":67,"referenced_works":["https://openalex.org/W1554944419","https://openalex.org/W2001619934","https://openalex.org/W2025037675","https://openalex.org/W2072184377","https://openalex.org/W2104933073","https://openalex.org/W2107541057","https://openalex.org/W2115098571","https://openalex.org/W2118414527","https://openalex.org/W2119821739","https://openalex.org/W2131414141","https://openalex.org/W2137977421","https://openalex.org/W2161278885","https://openalex.org/W2167277498","https://openalex.org/W2171033594","https://openalex.org/W2468462628","https://openalex.org/W2557488584","https://openalex.org/W2620829832","https://openalex.org/W2662684858","https://openalex.org/W2736848882","https://openalex.org/W2787070805","https://openalex.org/W2794238513","https://openalex.org/W2798421489","https://openalex.org/W2802235618","https://openalex.org/W2911964244","https://openalex.org/W2919979744","https://openalex.org/W2980779853","https://openalex.org/W3004204682","https://openalex.org/W3010381061","https://openalex.org/W3012099172","https://openalex.org/W3014903039","https://openalex.org/W3014974411","https://openalex.org/W3016056765","https://openalex.org/W3017855299","https://openalex.org/W3022787740","https://openalex.org/W3023156552","https://openalex.org/W3025394897","https://openalex.org/W3025464096","https://openalex.org/W3025504737","https://openalex.org/W3033226475","https://openalex.org/W3033857292","https://openalex.org/W3035875293","https://openalex.org/W3036674813","https://openalex.org/W3037326486","https://openalex.org/W3038102268","https://openalex.org/W3038925693","https://openalex.org/W3038953616","https://openalex.org/W3039198011","https://openalex.org/W3040299034","https://openalex.org/W3041160213","https://openalex.org/W3042218092","https://openalex.org/W3042331631","https://openalex.org/W3043858811","https://openalex.org/W3044240928","https://openalex.org/W3045160318","https://openalex.org/W3049071158","https://openalex.org/W3082946543","https://openalex.org/W3087795675","https://openalex.org/W3092256953","https://openalex.org/W3104612611","https://openalex.org/W3122085989","https://openalex.org/W3153743799","https://openalex.org/W3164020550","https://openalex.org/W3212553267","https://openalex.org/W4225762034","https://openalex.org/W4232552111","https://openalex.org/W4239510810","https://openalex.org/W4295313945"],"related_works":["https://openalex.org/W4286902601","https://openalex.org/W3206613651","https://openalex.org/W3169687406","https://openalex.org/W3103707007","https://openalex.org/W2963001956","https://openalex.org/W2906178137","https://openalex.org/W2782093256","https://openalex.org/W2405673391","https://openalex.org/W2395916875","https://openalex.org/W2200000192"],"abstract_inverted_index":{"The":[0,76,201],"whole":[1],"world":[2],"faces":[3],"a":[4,56,67,242],"pandemic":[5],"situation":[6],"due":[7],"to":[8,18,23,73,82,94,111,115,123,148,169,174,236],"the":[9,20,84,87,96,102,105,117,141,158,178,217],"deadly":[10],"virus,":[11],"namely":[12],"COVID-19.":[13],"It":[14,129],"takes":[15],"considerable":[16],"time":[17,213],"get":[19,38],"virus":[21],"well-matured":[22],"be":[24,32,121],"traced,":[25],"and":[26,54,70,89,98,126,229,240],"during":[27],"this":[28,41,74,133],"time,":[29],"it":[30,119],"may":[31],"transmitted":[33],"among":[34,197],"other":[35,198],"people.":[36],"To":[37],"rid":[39],"of":[40,46,86,101,145,161,207,216],"unexpected":[42],"situation,":[43],"quick":[44],"identification":[45],"COVID-19":[47],"patients":[48,210],"is":[49,130,204],"required.":[50],"We":[51],"have":[52,182,233],"designed":[53],"optimized":[55],"machine":[57],"learning-based":[58],"framework":[59,78],"using":[60,185],"inpatient's":[61],"facility":[62],"data":[63],"that":[64,135,215],"will":[65],"give":[66],"user-friendly,":[68],"cost-effective,":[69],"time-efficient":[71],"solution":[72],"pandemic.":[75],"proposed":[77,106,152,202],"uses":[79],"Bayesian":[80,164],"optimization":[81,165],"optimize":[83],"hyperparameters":[85],"classifier":[88],"ADAptive":[90],"SYNthetic":[91],"(ADASYN)":[92],"algorithm":[93],"balance":[95],"COVID":[97,209],"non-COVID":[99],"classes":[100],"dataset.":[103],"Although":[104],"technique":[107],"has":[108,166,193],"been":[109,167,183,195,234],"applied":[110],"nine":[112],"state-of-the-art":[113],"classifiers":[114,125],"show":[116,175],"efficacy,":[118],"can":[120],"used":[122],"many":[124],"classification":[127],"problems.":[128],"evident":[131],"from":[132],"study":[134],"eXtreme":[136],"Gradient":[137],"Boosting":[138],"(XGB)":[139],"provides":[140],"highest":[142],"Kappa":[143],"index":[144,160],"97.00%.":[146],"Compared":[147],"without":[149],"ADASYN,":[150],"our":[151],"approach":[153],"yields":[154],"an":[155],"improvement":[156],"in":[157],"kappa":[159],"96.94%.":[162],"Besides,":[163],"compared":[168],"grid":[170],"search,":[171],"random":[172],"search":[173],"efficiency.":[176],"Furthermore,":[177],"most":[179],"dominating":[180],"features":[181],"identified":[184],"SHapely":[186],"Adaptive":[187],"exPlanations":[188],"(SHAP)":[189],"analysis.":[190],"A":[191],"comparison":[192],"also":[194],"made":[196],"related":[199],"works.":[200],"method":[203],"capable":[205],"enough":[206],"tracing":[208],"spending":[211],"less":[212],"than":[214],"conventional":[218],"techniques.":[219],"Finally,":[220],"two":[221],"potential":[222],"applications,":[223],"namely,":[224],"clinically":[225],"operable":[226],"decision":[227,230],"tree":[228],"support":[231,237],"system,":[232],"demonstrated":[235],"clinical":[238],"staff":[239],"build":[241],"recommender":[243],"system.":[244]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W3118490356","counts_by_year":[{"year":2024,"cited_by_count":14},{"year":2023,"cited_by_count":18},{"year":2022,"cited_by_count":25},{"year":2021,"cited_by_count":9}],"updated_date":"2025-01-21T08:33:07.649863","created_date":"2021-01-18"}