{"id":"https://openalex.org/W3107208811","doi":"https://doi.org/10.1109/access.2020.3041600","title":"Periodic Time Series Data Analysis by Deep Learning Methodology","display_name":"Periodic Time Series Data Analysis by Deep Learning Methodology","publication_year":2020,"publication_date":"2020-01-01","ids":{"openalex":"https://openalex.org/W3107208811","doi":"https://doi.org/10.1109/access.2020.3041600","mag":"3107208811"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1109/access.2020.3041600","pdf_url":"https://ieeexplore.ieee.org/ielx7/6287639/6514899/09274411.pdf","source":{"id":"https://openalex.org/S2485537415","display_name":"IEEE Access","issn_l":"2169-3536","issn":["2169-3536"],"is_oa":true,"is_in_doaj":true,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310319808","host_organization_name":"Institute of Electrical and Electronics Engineers","host_organization_lineage":["https://openalex.org/P4310319808"],"host_organization_lineage_names":["Institute of Electrical and Electronics Engineers"],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},"type":"article","type_crossref":"journal-article","indexed_in":["crossref","doaj"],"open_access":{"is_oa":true,"oa_status":"gold","oa_url":"https://ieeexplore.ieee.org/ielx7/6287639/6514899/09274411.pdf","any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5003918426","display_name":"Haolong Zhang","orcid":"https://orcid.org/0000-0002-0411-0878"},"institutions":[{"id":"https://openalex.org/I153718931","display_name":"University of Ottawa","ror":"https://ror.org/03c4mmv16","country_code":"CA","type":"funder","lineage":["https://openalex.org/I153718931"]}],"countries":["CA"],"is_corresponding":false,"raw_author_name":"Haolong Zhang","raw_affiliation_strings":["School of Electrical Engineering and Computer Science, University of Ottawa, Ottawa, Canada"],"affiliations":[{"raw_affiliation_string":"School of Electrical Engineering and Computer Science, University of Ottawa, Ottawa, Canada","institution_ids":["https://openalex.org/I153718931"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5078222293","display_name":"Haoye Lu","orcid":"https://orcid.org/0000-0003-0933-2370"},"institutions":[{"id":"https://openalex.org/I153718931","display_name":"University of Ottawa","ror":"https://ror.org/03c4mmv16","country_code":"CA","type":"funder","lineage":["https://openalex.org/I153718931"]}],"countries":["CA"],"is_corresponding":false,"raw_author_name":"Haoye Lu","raw_affiliation_strings":["School of Electrical Engineering and Computer Science, University of Ottawa, Ottawa, Canada"],"affiliations":[{"raw_affiliation_string":"School of Electrical Engineering and Computer Science, University of Ottawa, Ottawa, Canada","institution_ids":["https://openalex.org/I153718931"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5048076896","display_name":"Amiya Nayak","orcid":"https://orcid.org/0000-0002-4605-0500"},"institutions":[{"id":"https://openalex.org/I153718931","display_name":"University of Ottawa","ror":"https://ror.org/03c4mmv16","country_code":"CA","type":"funder","lineage":["https://openalex.org/I153718931"]}],"countries":["CA"],"is_corresponding":false,"raw_author_name":"Amiya Nayak","raw_affiliation_strings":["School of Electrical Engineering and Computer Science, University of Ottawa, Ottawa, Canada"],"affiliations":[{"raw_affiliation_string":"School of Electrical Engineering and Computer Science, University of Ottawa, Ottawa, Canada","institution_ids":["https://openalex.org/I153718931"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":{"value":1850,"currency":"USD","value_usd":1850},"apc_paid":{"value":1850,"currency":"USD","value_usd":1850},"fwci":0.792,"has_fulltext":true,"fulltext_origin":"pdf","cited_by_count":8,"citation_normalized_percentile":{"value":0.857458,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":83,"max":84},"biblio":{"volume":"8","issue":null,"first_page":"223078","last_page":"223088"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T12205","display_name":"Time Series Analysis and Forecasting","score":1.0,"subfield":{"id":"https://openalex.org/subfields/1711","display_name":"Signal Processing"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T12205","display_name":"Time Series Analysis and Forecasting","score":1.0,"subfield":{"id":"https://openalex.org/subfields/1711","display_name":"Signal Processing"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11309","display_name":"Music and Audio Processing","score":0.9837,"subfield":{"id":"https://openalex.org/subfields/1711","display_name":"Signal Processing"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11512","display_name":"Anomaly Detection Techniques and Applications","score":0.9751,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.8069042},{"id":"https://openalex.org/C99498987","wikidata":"https://www.wikidata.org/wiki/Q2210247","display_name":"Noise (video)","level":3,"score":0.69991183},{"id":"https://openalex.org/C81363708","wikidata":"https://www.wikidata.org/wiki/Q17084460","display_name":"Convolutional neural network","level":2,"score":0.64299047},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.62324923},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.58548355},{"id":"https://openalex.org/C151406439","wikidata":"https://www.wikidata.org/wiki/Q186588","display_name":"Time series","level":2,"score":0.5822496},{"id":"https://openalex.org/C192209626","wikidata":"https://www.wikidata.org/wiki/Q190909","display_name":"Focus (optics)","level":2,"score":0.5460617},{"id":"https://openalex.org/C108583219","wikidata":"https://www.wikidata.org/wiki/Q197536","display_name":"Deep learning","level":2,"score":0.5138781},{"id":"https://openalex.org/C143724316","wikidata":"https://www.wikidata.org/wiki/Q312468","display_name":"Series (stratigraphy)","level":2,"score":0.5102446},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.5015931},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.40638864},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.3948026},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.36420983},{"id":"https://openalex.org/C151730666","wikidata":"https://www.wikidata.org/wiki/Q7205","display_name":"Paleontology","level":1,"score":0.0},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C120665830","wikidata":"https://www.wikidata.org/wiki/Q14620","display_name":"Optics","level":1,"score":0.0},{"id":"https://openalex.org/C115961682","wikidata":"https://www.wikidata.org/wiki/Q860623","display_name":"Image (mathematics)","level":2,"score":0.0},{"id":"https://openalex.org/C86803240","wikidata":"https://www.wikidata.org/wiki/Q420","display_name":"Biology","level":0,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":true,"landing_page_url":"https://doi.org/10.1109/access.2020.3041600","pdf_url":"https://ieeexplore.ieee.org/ielx7/6287639/6514899/09274411.pdf","source":{"id":"https://openalex.org/S2485537415","display_name":"IEEE Access","issn_l":"2169-3536","issn":["2169-3536"],"is_oa":true,"is_in_doaj":true,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310319808","host_organization_name":"Institute of Electrical and Electronics Engineers","host_organization_lineage":["https://openalex.org/P4310319808"],"host_organization_lineage_names":["Institute of Electrical and Electronics Engineers"],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},{"is_oa":false,"landing_page_url":"https://doaj.org/article/7176b7e78cdd43bc89fcb5bdaa2d9d28","pdf_url":null,"source":{"id":"https://openalex.org/S4306401280","display_name":"DOAJ (DOAJ: Directory of Open Access Journals)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"repository"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1109/access.2020.3041600","pdf_url":"https://ieeexplore.ieee.org/ielx7/6287639/6514899/09274411.pdf","source":{"id":"https://openalex.org/S2485537415","display_name":"IEEE Access","issn_l":"2169-3536","issn":["2169-3536"],"is_oa":true,"is_in_doaj":true,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310319808","host_organization_name":"Institute of Electrical and Electronics Engineers","host_organization_lineage":["https://openalex.org/P4310319808"],"host_organization_lineage_names":["Institute of Electrical and Electronics Engineers"],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},"sustainable_development_goals":[{"display_name":"Decent work and economic growth","score":0.55,"id":"https://metadata.un.org/sdg/8"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":35,"referenced_works":["https://openalex.org/W1522301498","https://openalex.org/W1900747440","https://openalex.org/W1968354112","https://openalex.org/W1975257359","https://openalex.org/W1984674851","https://openalex.org/W2026430219","https://openalex.org/W2035104901","https://openalex.org/W2050493487","https://openalex.org/W2070808135","https://openalex.org/W2081028405","https://openalex.org/W2111460811","https://openalex.org/W2146502635","https://openalex.org/W2162897826","https://openalex.org/W2163605009","https://openalex.org/W2166547175","https://openalex.org/W2183341477","https://openalex.org/W2253795368","https://openalex.org/W2524083015","https://openalex.org/W2551393996","https://openalex.org/W2555077524","https://openalex.org/W2613571630","https://openalex.org/W2736191430","https://openalex.org/W2775133808","https://openalex.org/W2786161686","https://openalex.org/W2787600432","https://openalex.org/W2792071264","https://openalex.org/W2795342689","https://openalex.org/W2800147211","https://openalex.org/W2963123301","https://openalex.org/W2964121744","https://openalex.org/W2967636564","https://openalex.org/W3098949126","https://openalex.org/W3137695714","https://openalex.org/W3147765605","https://openalex.org/W848133049"],"related_works":["https://openalex.org/W4312417841","https://openalex.org/W4226493464","https://openalex.org/W3193565141","https://openalex.org/W3167935049","https://openalex.org/W3133861977","https://openalex.org/W3029198973","https://openalex.org/W2622688551","https://openalex.org/W2119012848","https://openalex.org/W1990205660","https://openalex.org/W1550175370"],"abstract_inverted_index":{"The":[0,16],"detection":[1],"of":[2,18,142,149,156,196],"periodicity":[3],"in":[4,12,35,42,146],"a":[5,10,69,89],"time":[6,124],"series":[7,125],"is":[8,140,159,204],"considered":[9],"challenge":[11],"many":[13,54],"research":[14],"areas.":[15],"difficulty":[17],"period":[19,62,75],"length":[20,63],"extraction":[21,64],"involves":[22],"the":[23,61,82,95,138,147,154,157,163,191,194,197,200,208,215],"varying":[24],"noise":[25,151],"levels":[26],"among":[27],"working":[28],"environments.":[29],"A":[30],"system":[31],"that":[32,88,137,185,211],"performs":[33],"well":[34],"one":[36],"environment":[37],"may":[38],"not":[39,160,166],"be":[40],"accurate":[41],"another.":[43],"Different":[44],"methods,":[45],"including":[46],"deep":[47],"neural":[48,71],"networks,":[49],"have":[50,135,183],"been":[51,116],"proposed":[52],"across":[53],"applications":[55],"to":[56,60,80],"find":[57],"suitable":[58],"solutions":[59],"problem.":[65],"This":[66],"article":[67],"proposes":[68],"convolutional":[70],"network":[72],"(CNN)":[73],"based":[74,109],"classification":[76],"algorithm,":[77],"named":[78],"PCA,":[79],"detect":[81],"dataset":[83],"periods.":[84,112],"In":[85,132],"particular,":[86,133],"assuming":[87],"data":[90,100,126,164],"stream":[91],"contains":[92],"periodical":[93],"features,":[94],"PCA":[96,139,158],"utilizes":[97],"historical":[98],"labeled":[99],"as":[101],"training":[102,155],"material":[103],"and":[104,121,178,199],"classifies":[105],"new":[106,187],"instances":[107],"accordingly":[108],"on":[110,118,175,214],"their":[111],"Its":[113],"performance":[114,174],"has":[115],"tested":[117],"both":[119,176],"synthetic":[120,177],"real-world":[122,179],"periodic":[123],"(PTSD)":[127],"with":[128],"very":[129],"encouraging":[130],"results.":[131],"We":[134],"observed":[136],"capable":[141],"achieving":[143],"100%":[144],"accuracy":[145],"case":[148],"low":[150],"PTSD.":[152],"Even":[153],"economical":[161],"if":[162],"do":[165],"contain":[167],"much":[168],"noise,":[169],"it":[170],"still":[171],"demonstrates":[172],"high":[173],"datasets.":[180],"Besides,":[181],"we":[182],"shown":[184],"our":[186],"algorithm":[188],"can":[189],"capture":[190],"relationship":[192],"between":[193],"shape":[195],"waves":[198],"target":[201],"period,":[202],"which":[203],"significantly":[205],"different":[206],"from":[207],"classical":[209],"methods":[210],"mainly":[212],"focus":[213],"wave's":[216],"amplitude.":[217]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W3107208811","counts_by_year":[{"year":2025,"cited_by_count":1},{"year":2024,"cited_by_count":1},{"year":2023,"cited_by_count":4},{"year":2022,"cited_by_count":1},{"year":2021,"cited_by_count":1}],"updated_date":"2025-04-21T18:12:12.435424","created_date":"2020-12-07"}