{"id":"https://openalex.org/W3103283503","doi":"https://doi.org/10.1109/access.2020.3038908","title":"Energy-Efficient Acceleration of Deep Neural Networks on Realtime-Constrained Embedded Edge Devices","display_name":"Energy-Efficient Acceleration of Deep Neural Networks on Realtime-Constrained Embedded Edge Devices","publication_year":2020,"publication_date":"2020-01-01","ids":{"openalex":"https://openalex.org/W3103283503","doi":"https://doi.org/10.1109/access.2020.3038908","mag":"3103283503"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1109/access.2020.3038908","pdf_url":"https://ieeexplore.ieee.org/ielx7/6287639/8948470/09262933.pdf","source":{"id":"https://openalex.org/S2485537415","display_name":"IEEE Access","issn_l":"2169-3536","issn":["2169-3536"],"is_oa":true,"is_in_doaj":true,"is_core":true,"host_organization":"https://openalex.org/P4310319808","host_organization_name":"Institute of Electrical and Electronics Engineers","host_organization_lineage":["https://openalex.org/P4310319808"],"host_organization_lineage_names":["Institute of Electrical and Electronics Engineers"],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},"type":"article","type_crossref":"journal-article","indexed_in":["crossref","doaj"],"open_access":{"is_oa":true,"oa_status":"gold","oa_url":"https://ieeexplore.ieee.org/ielx7/6287639/8948470/09262933.pdf","any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5025367193","display_name":"Bogil Kim","orcid":null},"institutions":[{"id":"https://openalex.org/I193775966","display_name":"Yonsei University","ror":"https://ror.org/01wjejq96","country_code":"KR","type":"education","lineage":["https://openalex.org/I193775966"]},{"id":"https://openalex.org/I4210142152","display_name":"ORCID","ror":"https://ror.org/04fa4r544","country_code":"US","type":"nonprofit","lineage":["https://openalex.org/I4210142152"]}],"countries":["KR","US"],"is_corresponding":false,"raw_author_name":"Bogil Kim","raw_affiliation_strings":["ORCiD","School of Electrical and Electronic Engineering, Yonsei University, Seoul, South Korea"],"affiliations":[{"raw_affiliation_string":"School of Electrical and Electronic Engineering, Yonsei University, Seoul, South Korea","institution_ids":["https://openalex.org/I193775966"]},{"raw_affiliation_string":"ORCiD","institution_ids":["https://openalex.org/I4210142152"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5102778981","display_name":"Sungjae Lee","orcid":"https://orcid.org/0000-0003-4316-2790"},"institutions":[{"id":"https://openalex.org/I193775966","display_name":"Yonsei University","ror":"https://ror.org/01wjejq96","country_code":"KR","type":"education","lineage":["https://openalex.org/I193775966"]}],"countries":["KR"],"is_corresponding":false,"raw_author_name":"Sungjae Lee","raw_affiliation_strings":["School of Electrical and Electronic Engineering, Yonsei University, Seoul, South Korea"],"affiliations":[{"raw_affiliation_string":"School of Electrical and Electronic Engineering, Yonsei University, Seoul, South Korea","institution_ids":["https://openalex.org/I193775966"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5028132107","display_name":"Amit Ranjan Trivedi","orcid":"https://orcid.org/0000-0001-5436-7922"},"institutions":[{"id":"https://openalex.org/I39422238","display_name":"University of Illinois Chicago","ror":"https://ror.org/02mpq6x41","country_code":"US","type":"education","lineage":["https://openalex.org/I39422238"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Amit Ranjan Trivedi","raw_affiliation_strings":["Department of Electrical and Computer Engineering, University of Illinois at Chicago, Chicago, IL, USA"],"affiliations":[{"raw_affiliation_string":"Department of Electrical and Computer Engineering, University of Illinois at Chicago, Chicago, IL, USA","institution_ids":["https://openalex.org/I39422238"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5028411609","display_name":"William J. Song","orcid":"https://orcid.org/0000-0001-9170-5986"},"institutions":[{"id":"https://openalex.org/I4210142152","display_name":"ORCID","ror":"https://ror.org/04fa4r544","country_code":"US","type":"nonprofit","lineage":["https://openalex.org/I4210142152"]},{"id":"https://openalex.org/I193775966","display_name":"Yonsei University","ror":"https://ror.org/01wjejq96","country_code":"KR","type":"education","lineage":["https://openalex.org/I193775966"]}],"countries":["KR","US"],"is_corresponding":false,"raw_author_name":"William J. Song","raw_affiliation_strings":["ORCiD","School of Electrical and Electronic Engineering, Yonsei University, Seoul, South Korea"],"affiliations":[{"raw_affiliation_string":"ORCiD","institution_ids":["https://openalex.org/I4210142152"]},{"raw_affiliation_string":"School of Electrical and Electronic Engineering, Yonsei University, Seoul, South Korea","institution_ids":["https://openalex.org/I193775966"]}]}],"institution_assertions":[],"countries_distinct_count":2,"institutions_distinct_count":3,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":{"value":1850,"currency":"USD","value_usd":1850,"provenance":"doaj"},"apc_paid":{"value":1850,"currency":"USD","value_usd":1850,"provenance":"doaj"},"fwci":1.764,"has_fulltext":true,"fulltext_origin":"pdf","cited_by_count":20,"citation_normalized_percentile":{"value":0.999939,"is_in_top_1_percent":true,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":92,"max":93},"biblio":{"volume":"8","issue":null,"first_page":"216259","last_page":"216270"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10036","display_name":"Advanced Neural Network Applications","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10036","display_name":"Advanced Neural Network Applications","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10054","display_name":"Parallel Computing and Optimization Techniques","score":0.9979,"subfield":{"id":"https://openalex.org/subfields/1708","display_name":"Hardware and Architecture"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10502","display_name":"Advanced Memory and Neural Computing","score":0.9972,"subfield":{"id":"https://openalex.org/subfields/2208","display_name":"Electrical and Electronic Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/datapath","display_name":"Datapath","score":0.71394396},{"id":"https://openalex.org/keywords/hardware-acceleration","display_name":"Hardware acceleration","score":0.62780994},{"id":"https://openalex.org/keywords/edge-device","display_name":"Edge device","score":0.626063}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.81017387},{"id":"https://openalex.org/C2781198647","wikidata":"https://www.wikidata.org/wiki/Q1633673","display_name":"Datapath","level":2,"score":0.71394396},{"id":"https://openalex.org/C13164978","wikidata":"https://www.wikidata.org/wiki/Q600158","display_name":"Hardware acceleration","level":3,"score":0.62780994},{"id":"https://openalex.org/C138236772","wikidata":"https://www.wikidata.org/wiki/Q25098575","display_name":"Edge device","level":3,"score":0.626063},{"id":"https://openalex.org/C2780165032","wikidata":"https://www.wikidata.org/wiki/Q16869822","display_name":"Energy consumption","level":2,"score":0.58073336},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.5356023},{"id":"https://openalex.org/C2742236","wikidata":"https://www.wikidata.org/wiki/Q924713","display_name":"Efficient energy use","level":2,"score":0.52620417},{"id":"https://openalex.org/C117896860","wikidata":"https://www.wikidata.org/wiki/Q11376","display_name":"Acceleration","level":2,"score":0.52267975},{"id":"https://openalex.org/C149635348","wikidata":"https://www.wikidata.org/wiki/Q193040","display_name":"Embedded system","level":1,"score":0.5219485},{"id":"https://openalex.org/C162307627","wikidata":"https://www.wikidata.org/wiki/Q204833","display_name":"Enhanced Data Rates for GSM Evolution","level":2,"score":0.5032014},{"id":"https://openalex.org/C43521106","wikidata":"https://www.wikidata.org/wiki/Q2165493","display_name":"Pipeline (software)","level":2,"score":0.46483728},{"id":"https://openalex.org/C2778456923","wikidata":"https://www.wikidata.org/wiki/Q5337692","display_name":"Edge computing","level":3,"score":0.4561571},{"id":"https://openalex.org/C186370098","wikidata":"https://www.wikidata.org/wiki/Q442787","display_name":"Energy (signal processing)","level":2,"score":0.4462145},{"id":"https://openalex.org/C9390403","wikidata":"https://www.wikidata.org/wiki/Q3966","display_name":"Computer hardware","level":1,"score":0.44257298},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.15546975},{"id":"https://openalex.org/C42935608","wikidata":"https://www.wikidata.org/wiki/Q190411","display_name":"Field-programmable gate array","level":2,"score":0.15001434},{"id":"https://openalex.org/C111919701","wikidata":"https://www.wikidata.org/wiki/Q9135","display_name":"Operating system","level":1,"score":0.08720064},{"id":"https://openalex.org/C79974875","wikidata":"https://www.wikidata.org/wiki/Q483639","display_name":"Cloud computing","level":2,"score":0.0},{"id":"https://openalex.org/C18903297","wikidata":"https://www.wikidata.org/wiki/Q7150","display_name":"Ecology","level":1,"score":0.0},{"id":"https://openalex.org/C105795698","wikidata":"https://www.wikidata.org/wiki/Q12483","display_name":"Statistics","level":1,"score":0.0},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.0},{"id":"https://openalex.org/C74650414","wikidata":"https://www.wikidata.org/wiki/Q11397","display_name":"Classical mechanics","level":1,"score":0.0},{"id":"https://openalex.org/C119599485","wikidata":"https://www.wikidata.org/wiki/Q43035","display_name":"Electrical engineering","level":1,"score":0.0},{"id":"https://openalex.org/C86803240","wikidata":"https://www.wikidata.org/wiki/Q420","display_name":"Biology","level":0,"score":0.0},{"id":"https://openalex.org/C127413603","wikidata":"https://www.wikidata.org/wiki/Q11023","display_name":"Engineering","level":0,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":true,"landing_page_url":"https://doi.org/10.1109/access.2020.3038908","pdf_url":"https://ieeexplore.ieee.org/ielx7/6287639/8948470/09262933.pdf","source":{"id":"https://openalex.org/S2485537415","display_name":"IEEE Access","issn_l":"2169-3536","issn":["2169-3536"],"is_oa":true,"is_in_doaj":true,"is_core":true,"host_organization":"https://openalex.org/P4310319808","host_organization_name":"Institute of Electrical and Electronics Engineers","host_organization_lineage":["https://openalex.org/P4310319808"],"host_organization_lineage_names":["Institute of Electrical and Electronics Engineers"],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},{"is_oa":false,"landing_page_url":"https://doaj.org/article/90ea5134965d486f9679abdf6026d4b2","pdf_url":null,"source":{"id":"https://openalex.org/S4306401280","display_name":"DOAJ (DOAJ: Directory of Open Access Journals)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"repository"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1109/access.2020.3038908","pdf_url":"https://ieeexplore.ieee.org/ielx7/6287639/8948470/09262933.pdf","source":{"id":"https://openalex.org/S2485537415","display_name":"IEEE Access","issn_l":"2169-3536","issn":["2169-3536"],"is_oa":true,"is_in_doaj":true,"is_core":true,"host_organization":"https://openalex.org/P4310319808","host_organization_name":"Institute of Electrical and Electronics Engineers","host_organization_lineage":["https://openalex.org/P4310319808"],"host_organization_lineage_names":["Institute of Electrical and Electronics Engineers"],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},"sustainable_development_goals":[{"id":"https://metadata.un.org/sdg/7","score":0.89,"display_name":"Affordable and clean energy"}],"grants":[{"funder":"https://openalex.org/F4320328359","funder_display_name":"Ministry of Science and ICT, South Korea","award_id":null},{"funder":"https://openalex.org/F4320334879","funder_display_name":"Korea Evaluation Institute of Industrial Technology","award_id":"#10080674"}],"datasets":[],"versions":[],"referenced_works_count":30,"referenced_works":["https://openalex.org/W1816932979","https://openalex.org/W1864199185","https://openalex.org/W1903029394","https://openalex.org/W2093326633","https://openalex.org/W2102605133","https://openalex.org/W2119144962","https://openalex.org/W2132424367","https://openalex.org/W2155893237","https://openalex.org/W2194775991","https://openalex.org/W2554197840","https://openalex.org/W2612445135","https://openalex.org/W2752037867","https://openalex.org/W2763421725","https://openalex.org/W2919064223","https://openalex.org/W2922395136","https://openalex.org/W2943267175","https://openalex.org/W2963037989","https://openalex.org/W2963112338","https://openalex.org/W2963122961","https://openalex.org/W2963125010","https://openalex.org/W2963163009","https://openalex.org/W2963367920","https://openalex.org/W2963674932","https://openalex.org/W2964299589","https://openalex.org/W2969388332","https://openalex.org/W2982083293","https://openalex.org/W2999803881","https://openalex.org/W3007788310","https://openalex.org/W3091933744","https://openalex.org/W4297775537"],"related_works":["https://openalex.org/W4322761281","https://openalex.org/W4319161913","https://openalex.org/W4313526662","https://openalex.org/W4313463218","https://openalex.org/W4312996489","https://openalex.org/W4238233472","https://openalex.org/W4205963435","https://openalex.org/W3216099748","https://openalex.org/W3111395152","https://openalex.org/W3106131444"],"abstract_inverted_index":{"This":[0],"paper":[1,93],"presents":[2,94],"a":[3,42,61,82,89,95,120],"hardware":[4,30,96],"management":[5,97],"technique":[6,98,139],"that":[7,101,205],"enables":[8,152],"energy-efficient":[9,115],"acceleration":[10],"of":[11,36,85,125,135],"deep":[12],"neural":[13,33,37,48,121],"networks":[14],"(DNNs)":[15],"on":[16,191,212],"realtime-constrained":[17],"embedded":[18,108,149,154],"edge":[19,25,77,109,150],"devices.It":[20],"becomes":[21],"increasingly":[22],"common":[23],"for":[24,32,58,74,224],"devices":[26,78],"to":[27,55,66,79,111,143,156,163],"incorporate":[28],"dedicated":[29],"accelerators":[31,38,57],"processing.The":[34],"execution":[35,63,91],"in":[39,88,106,114,147],"general":[40],"follows":[41],"host-device":[43],"model,":[44],"where":[45],"CPUs":[46],"offload":[47],"computations":[49],"(e.g.,":[50],"matrix":[51],"and":[52,68,128,161,200],"vector":[53],"calculations)":[54],"the":[56,75,148,153,169,184,225],"datapath-optimized":[59],"executions.Such":[60],"serialized":[62],"is":[64,72],"simple":[65],"implement":[67],"manage,":[69],"but":[70],"it":[71,178,218],"wasteful":[73],"resource-limited":[76],"exercise":[80],"only":[81],"single":[83],"type":[84],"processing":[86,104,136],"unit":[87],"discrete":[90],"phase.This":[92],"named":[99],"NeuroPipe":[100,118,206],"utilizes":[102],"heterogeneous":[103],"units":[105],"an":[107],"device":[110],"accelerate":[112,144],"DNNs":[113],"manner.In":[116],"particular,":[117],"splits":[119],"network":[122],"into":[123],"groups":[124],"consecutive":[126],"layers":[127],"pipelines":[129],"their":[130],"executions":[131],"using":[132],"different":[133],"types":[134],"units.The":[137],"proposed":[138],"offers":[140],"several":[141],"advantages":[142],"DNN":[145],"inference":[146],"device.It":[151],"processor":[155],"operate":[157],"at":[158,183],"lower":[159],"voltage":[160],"frequency":[162],"enhance":[164],"energy":[165,186,208,227],"efficiency":[166],"while":[167],"delivering":[168],"same":[170,185,226],"performance":[171,215,223],"as":[172],"uncontrolled":[173],"baseline":[174],"executions,":[175],"or":[176,217],"inversely":[177],"can":[179,219],"dispatch":[180],"faster":[181],"inferences":[182],"consumption.Our":[187],"measurement-driven":[188],"experiments":[189],"based":[190],"NVIDIA":[192],"Jetson":[193],"AGX":[194],"Xavier":[195],"with":[196],"64":[197],"tensor":[198],"cores":[199],"eight-core":[201],"ARM":[202],"CPU":[203],"demonstrate":[204],"reduces":[207],"consumption":[209],"by":[210],"11.4%":[211],"average":[213],"without":[214],"degradation,":[216],"achieve":[220],"30.5%":[221],"greater":[222],"consumption.":[228]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W3103283503","counts_by_year":[{"year":2024,"cited_by_count":1},{"year":2023,"cited_by_count":6},{"year":2022,"cited_by_count":5},{"year":2021,"cited_by_count":6},{"year":2020,"cited_by_count":1}],"updated_date":"2024-12-06T07:45:52.404742","created_date":"2020-11-23"}