{"id":"https://openalex.org/W3096685126","doi":"https://doi.org/10.1109/access.2020.3033531","title":"Exploring Rare Pose in Human Pose Estimation","display_name":"Exploring Rare Pose in Human Pose Estimation","publication_year":2020,"publication_date":"2020-01-01","ids":{"openalex":"https://openalex.org/W3096685126","doi":"https://doi.org/10.1109/access.2020.3033531","mag":"3096685126"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1109/access.2020.3033531","pdf_url":"https://ieeexplore.ieee.org/ielx7/6287639/8948470/09239282.pdf","source":{"id":"https://openalex.org/S2485537415","display_name":"IEEE Access","issn_l":"2169-3536","issn":["2169-3536"],"is_oa":true,"is_in_doaj":true,"is_core":true,"host_organization":"https://openalex.org/P4310319808","host_organization_name":"Institute of Electrical and Electronics Engineers","host_organization_lineage":["https://openalex.org/P4310319808"],"host_organization_lineage_names":["Institute of Electrical and Electronics Engineers"],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},"type":"article","type_crossref":"journal-article","indexed_in":["crossref","doaj"],"open_access":{"is_oa":true,"oa_status":"gold","oa_url":"https://ieeexplore.ieee.org/ielx7/6287639/8948470/09239282.pdf","any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5101571709","display_name":"Jihye Hwang","orcid":"https://orcid.org/0000-0002-6774-0586"},"institutions":[],"countries":["KR"],"is_corresponding":false,"raw_author_name":"Jihye Hwang","raw_affiliation_strings":["Graduate School of Convergence Science and Technology, Seoul National University, Seoul, South Korea"],"affiliations":[{"raw_affiliation_string":"Graduate School of Convergence Science and Technology, Seoul National University, Seoul, South Korea","institution_ids":[]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5024122314","display_name":"John Yang","orcid":"https://orcid.org/0000-0001-6056-0155"},"institutions":[],"countries":["KR"],"is_corresponding":false,"raw_author_name":"John Yang","raw_affiliation_strings":["Graduate School of Convergence Science and Technology, Seoul National University, Seoul, South Korea"],"affiliations":[{"raw_affiliation_string":"Graduate School of Convergence Science and Technology, Seoul National University, Seoul, South Korea","institution_ids":[]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5084897975","display_name":"Nojun Kwak","orcid":"https://orcid.org/0000-0002-1792-0327"},"institutions":[],"countries":["KR"],"is_corresponding":false,"raw_author_name":"Nojun Kwak","raw_affiliation_strings":["Graduate School of Convergence Science and Technology, Seoul National University, Seoul, South Korea"],"affiliations":[{"raw_affiliation_string":"Graduate School of Convergence Science and Technology, Seoul National University, Seoul, South Korea","institution_ids":[]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":{"value":1850,"currency":"USD","value_usd":1850,"provenance":"doaj"},"apc_paid":{"value":1850,"currency":"USD","value_usd":1850,"provenance":"doaj"},"fwci":0.588,"has_fulltext":true,"fulltext_origin":"pdf","cited_by_count":9,"citation_normalized_percentile":{"value":0.776814,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":85,"max":86},"biblio":{"volume":"8","issue":null,"first_page":"194964","last_page":"194977"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10812","display_name":"Human Action Recognition and Pose Estimation","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10812","display_name":"Human Action Recognition and Pose Estimation","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11512","display_name":"Anomaly Detection in High-Dimensional Data","score":0.9968,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11398","display_name":"Gesture Recognition in Human-Computer Interaction","score":0.9963,"subfield":{"id":"https://openalex.org/subfields/1709","display_name":"Human-Computer Interaction"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/pose-estimation","display_name":"Pose Estimation","score":0.648232},{"id":"https://openalex.org/keywords/3d-human-pose","display_name":"3D Human Pose","score":0.592268},{"id":"https://openalex.org/keywords/outlier-detection","display_name":"Outlier Detection","score":0.5387},{"id":"https://openalex.org/keywords/gesture-recognition","display_name":"Gesture Recognition","score":0.518196}],"concepts":[{"id":"https://openalex.org/C52102323","wikidata":"https://www.wikidata.org/wiki/Q1671968","display_name":"Pose","level":2,"score":0.8314052},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.71540785},{"id":"https://openalex.org/C73555534","wikidata":"https://www.wikidata.org/wiki/Q622825","display_name":"Cluster analysis","level":2,"score":0.6903685},{"id":"https://openalex.org/C79337645","wikidata":"https://www.wikidata.org/wiki/Q779824","display_name":"Outlier","level":2,"score":0.6597589},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.6353291},{"id":"https://openalex.org/C164866538","wikidata":"https://www.wikidata.org/wiki/Q367351","display_name":"Cluster (spacecraft)","level":2,"score":0.5785721},{"id":"https://openalex.org/C36613465","wikidata":"https://www.wikidata.org/wiki/Q4636322","display_name":"3D pose estimation","level":3,"score":0.5710627},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.48039037},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.33714134},{"id":"https://openalex.org/C199360897","wikidata":"https://www.wikidata.org/wiki/Q9143","display_name":"Programming language","level":1,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":true,"landing_page_url":"https://doi.org/10.1109/access.2020.3033531","pdf_url":"https://ieeexplore.ieee.org/ielx7/6287639/8948470/09239282.pdf","source":{"id":"https://openalex.org/S2485537415","display_name":"IEEE Access","issn_l":"2169-3536","issn":["2169-3536"],"is_oa":true,"is_in_doaj":true,"is_core":true,"host_organization":"https://openalex.org/P4310319808","host_organization_name":"Institute of Electrical and Electronics Engineers","host_organization_lineage":["https://openalex.org/P4310319808"],"host_organization_lineage_names":["Institute of Electrical and Electronics Engineers"],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},{"is_oa":false,"landing_page_url":"https://doaj.org/article/870af0be5133496b97fc317a89aab7a0","pdf_url":null,"source":{"id":"https://openalex.org/S4306401280","display_name":"DOAJ (DOAJ: Directory of Open Access Journals)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"repository"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1109/access.2020.3033531","pdf_url":"https://ieeexplore.ieee.org/ielx7/6287639/8948470/09239282.pdf","source":{"id":"https://openalex.org/S2485537415","display_name":"IEEE Access","issn_l":"2169-3536","issn":["2169-3536"],"is_oa":true,"is_in_doaj":true,"is_core":true,"host_organization":"https://openalex.org/P4310319808","host_organization_name":"Institute of Electrical and Electronics Engineers","host_organization_lineage":["https://openalex.org/P4310319808"],"host_organization_lineage_names":["Institute of Electrical and Electronics Engineers"],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":36,"referenced_works":["https://openalex.org/W142793689","https://openalex.org/W1623006543","https://openalex.org/W1861492603","https://openalex.org/W1967554269","https://openalex.org/W2080873731","https://openalex.org/W2099471712","https://openalex.org/W2119168155","https://openalex.org/W2135533529","https://openalex.org/W2150593711","https://openalex.org/W2186094539","https://openalex.org/W2194775991","https://openalex.org/W2551429935","https://openalex.org/W2767106145","https://openalex.org/W2800788706","https://openalex.org/W2810417023","https://openalex.org/W2897765997","https://openalex.org/W2916798096","https://openalex.org/W2921387582","https://openalex.org/W2936503027","https://openalex.org/W2962730651","https://openalex.org/W2962960082","https://openalex.org/W2963113370","https://openalex.org/W2963351448","https://openalex.org/W2963402313","https://openalex.org/W2963516811","https://openalex.org/W2963691377","https://openalex.org/W2964050365","https://openalex.org/W2964221239","https://openalex.org/W2970941190","https://openalex.org/W2984835412","https://openalex.org/W2995910740","https://openalex.org/W3011722050","https://openalex.org/W3035524459","https://openalex.org/W3097149808","https://openalex.org/W3113950706","https://openalex.org/W4320013936"],"related_works":["https://openalex.org/W4318148659","https://openalex.org/W4312694060","https://openalex.org/W4299867837","https://openalex.org/W4281696776","https://openalex.org/W4253893311","https://openalex.org/W4206633503","https://openalex.org/W3201205132","https://openalex.org/W3089306886","https://openalex.org/W2951583186","https://openalex.org/W2798721181"],"abstract_inverted_index":{"We":[0,16],"tackle":[1],"the":[2,11,67,78,82,85,89,97,100,108,131,134,137,140,148],"issue":[3],"of":[4,110,116,121],"data":[5,86,111,125],"imbalance":[6],"between":[7,84],"different":[8],"poses":[9,19,76],"in":[10,28],"human":[12],"pose":[13,30,38,118,124,150],"estimation":[14],"problem.":[15],"explore":[17],"unusual":[18],"that":[20,61],"are":[21,64,114],"rare":[22,37,75,101,117,123,149],"which":[23,63,113],"occupy":[24],"a":[25,29,36,42,50],"small":[26],"portion":[27],"dataset.":[31,52],"In":[32,93,136],"order":[33,94],"to":[34,49,95],"identify":[35],"without":[39],"additional":[40],"learning,":[41],"simple":[43],"K-means":[44],"clustering":[45],"algorithm":[46],"is":[47,144],"applied":[48],"given":[51],"Experimental":[53],"results":[54],"on":[55,99,130],"MPII":[56],"and":[57,77,88,126],"COCO":[58],"datasets":[59],"show":[60],"outliers":[62],"far":[65],"from":[66,133],"nearest":[68],"cluster":[69,90],"center":[70,91],"can":[71],"be":[72],"defined":[73],"as":[74,81],"accuracy":[79],"decreases":[80],"distance":[83,132],"point":[87],"increases.":[92],"improve":[96],"performance":[98],"poses,":[102],"we":[103],"proposed":[104,138],"three":[105],"methods":[106],"for":[107],"problem":[109],"scarcity,":[112],"addition":[115,120],"duplicates,":[119],"synthetic":[122],"weighted":[127],"loss":[128],"based":[129],"cluster.":[135],"methods,":[139],"highest":[141],"increasing":[142],"score":[143],"13.5":[145],"mAP":[146],"at":[147],"data.":[151]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W3096685126","counts_by_year":[{"year":2024,"cited_by_count":3},{"year":2023,"cited_by_count":3},{"year":2022,"cited_by_count":2},{"year":2021,"cited_by_count":1}],"updated_date":"2024-12-02T04:11:55.211455","created_date":"2020-11-09"}