{"id":"https://openalex.org/W3094387186","doi":"https://doi.org/10.1109/access.2020.3032639","title":"An Evolutionary Algorithm for Many-Objective Optimization Based on Indicator and Vector-Angle Decomposition","display_name":"An Evolutionary Algorithm for Many-Objective Optimization Based on Indicator and Vector-Angle Decomposition","publication_year":2020,"publication_date":"2020-01-01","ids":{"openalex":"https://openalex.org/W3094387186","doi":"https://doi.org/10.1109/access.2020.3032639","mag":"3094387186"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1109/access.2020.3032639","pdf_url":"https://ieeexplore.ieee.org/ielx7/6287639/8948470/09234434.pdf","source":{"id":"https://openalex.org/S2485537415","display_name":"IEEE Access","issn_l":"2169-3536","issn":["2169-3536"],"is_oa":true,"is_in_doaj":true,"is_core":true,"host_organization":"https://openalex.org/P4310319808","host_organization_name":"Institute of Electrical and Electronics Engineers","host_organization_lineage":["https://openalex.org/P4310319808"],"host_organization_lineage_names":["Institute of Electrical and Electronics Engineers"],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},"type":"article","type_crossref":"journal-article","indexed_in":["crossref","doaj"],"open_access":{"is_oa":true,"oa_status":"gold","oa_url":"https://ieeexplore.ieee.org/ielx7/6287639/8948470/09234434.pdf","any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5040536485","display_name":"Wenjing Sun","orcid":"https://orcid.org/0000-0003-3481-3379"},"institutions":[{"id":"https://openalex.org/I927504317","display_name":"Nanchang Hangkong University","ror":"https://ror.org/0369pvp92","country_code":"CN","type":"education","lineage":["https://openalex.org/I927504317"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Wenjing Sun","raw_affiliation_strings":["Key Laboratory of Jiangxi Province for Image Processing and Pattern Recognition, Nanchang Hangkong University, Nanchang, China"],"affiliations":[{"raw_affiliation_string":"Key Laboratory of Jiangxi Province for Image Processing and Pattern Recognition, Nanchang Hangkong University, Nanchang, China","institution_ids":["https://openalex.org/I927504317"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5076006897","display_name":"Junhua Li","orcid":"https://orcid.org/0000-0001-5789-6125"},"institutions":[{"id":"https://openalex.org/I927504317","display_name":"Nanchang Hangkong University","ror":"https://ror.org/0369pvp92","country_code":"CN","type":"education","lineage":["https://openalex.org/I927504317"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Junhua Li","raw_affiliation_strings":["Key Laboratory of Jiangxi Province for Image Processing and Pattern Recognition, Nanchang Hangkong University, Nanchang, China"],"affiliations":[{"raw_affiliation_string":"Key Laboratory of Jiangxi Province for Image Processing and Pattern Recognition, Nanchang Hangkong University, Nanchang, China","institution_ids":["https://openalex.org/I927504317"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":{"value":1850,"currency":"USD","value_usd":1850,"provenance":"doaj"},"apc_paid":{"value":1850,"currency":"USD","value_usd":1850,"provenance":"doaj"},"fwci":0.114,"has_fulltext":true,"fulltext_origin":"pdf","cited_by_count":1,"citation_normalized_percentile":{"value":0.381187,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":61,"max":69},"biblio":{"volume":"8","issue":null,"first_page":"195089","last_page":"195101"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10848","display_name":"Advanced Multi-Objective Optimization Algorithms","score":1.0,"subfield":{"id":"https://openalex.org/subfields/1703","display_name":"Computational Theory and Mathematics"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10848","display_name":"Advanced Multi-Objective Optimization Algorithms","score":1.0,"subfield":{"id":"https://openalex.org/subfields/1703","display_name":"Computational Theory and Mathematics"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11798","display_name":"Optimal Experimental Design Methods","score":0.9962,"subfield":{"id":"https://openalex.org/subfields/1803","display_name":"Management Science and Operations Research"},"field":{"id":"https://openalex.org/fields/18","display_name":"Decision Sciences"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}},{"id":"https://openalex.org/T10100","display_name":"Metaheuristic Optimization Algorithms Research","score":0.9913,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[],"concepts":[{"id":"https://openalex.org/C159149176","wikidata":"https://www.wikidata.org/wiki/Q14489129","display_name":"Evolutionary algorithm","level":2,"score":0.6193148},{"id":"https://openalex.org/C2777303404","wikidata":"https://www.wikidata.org/wiki/Q759757","display_name":"Convergence (economics)","level":2,"score":0.5686053},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.5556726},{"id":"https://openalex.org/C126255220","wikidata":"https://www.wikidata.org/wiki/Q141495","display_name":"Mathematical optimization","level":1,"score":0.54948336},{"id":"https://openalex.org/C68781425","wikidata":"https://www.wikidata.org/wiki/Q2052203","display_name":"Multi-objective optimization","level":2,"score":0.5380603},{"id":"https://openalex.org/C164088818","wikidata":"https://www.wikidata.org/wiki/Q7917833","display_name":"Vector optimization","level":4,"score":0.5259999},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.51722986},{"id":"https://openalex.org/C105902424","wikidata":"https://www.wikidata.org/wiki/Q1197129","display_name":"Evolutionary computation","level":2,"score":0.50233364},{"id":"https://openalex.org/C137635306","wikidata":"https://www.wikidata.org/wiki/Q182667","display_name":"Pareto principle","level":2,"score":0.49095324},{"id":"https://openalex.org/C137836250","wikidata":"https://www.wikidata.org/wiki/Q984063","display_name":"Optimization problem","level":2,"score":0.4801166},{"id":"https://openalex.org/C177264268","wikidata":"https://www.wikidata.org/wiki/Q1514741","display_name":"Set (abstract data type)","level":2,"score":0.4195999},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.3399909},{"id":"https://openalex.org/C122357587","wikidata":"https://www.wikidata.org/wiki/Q6934508","display_name":"Multi-swarm optimization","level":3,"score":0.24401364},{"id":"https://openalex.org/C162324750","wikidata":"https://www.wikidata.org/wiki/Q8134","display_name":"Economics","level":0,"score":0.0},{"id":"https://openalex.org/C199360897","wikidata":"https://www.wikidata.org/wiki/Q9143","display_name":"Programming language","level":1,"score":0.0},{"id":"https://openalex.org/C50522688","wikidata":"https://www.wikidata.org/wiki/Q189833","display_name":"Economic growth","level":1,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":true,"landing_page_url":"https://doi.org/10.1109/access.2020.3032639","pdf_url":"https://ieeexplore.ieee.org/ielx7/6287639/8948470/09234434.pdf","source":{"id":"https://openalex.org/S2485537415","display_name":"IEEE Access","issn_l":"2169-3536","issn":["2169-3536"],"is_oa":true,"is_in_doaj":true,"is_core":true,"host_organization":"https://openalex.org/P4310319808","host_organization_name":"Institute of Electrical and Electronics Engineers","host_organization_lineage":["https://openalex.org/P4310319808"],"host_organization_lineage_names":["Institute of Electrical and Electronics Engineers"],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},{"is_oa":false,"landing_page_url":"https://doaj.org/article/8bdfe8cd2f85493bada01aca5db7bc0e","pdf_url":null,"source":{"id":"https://openalex.org/S4306401280","display_name":"DOAJ (DOAJ: Directory of Open Access Journals)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"repository"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1109/access.2020.3032639","pdf_url":"https://ieeexplore.ieee.org/ielx7/6287639/8948470/09234434.pdf","source":{"id":"https://openalex.org/S2485537415","display_name":"IEEE Access","issn_l":"2169-3536","issn":["2169-3536"],"is_oa":true,"is_in_doaj":true,"is_core":true,"host_organization":"https://openalex.org/P4310319808","host_organization_name":"Institute of Electrical and Electronics Engineers","host_organization_lineage":["https://openalex.org/P4310319808"],"host_organization_lineage_names":["Institute of Electrical and Electronics Engineers"],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},"sustainable_development_goals":[],"grants":[{"funder":"https://openalex.org/F4320321001","funder_display_name":"National Natural Science Foundation of China","award_id":"61866026"},{"funder":"https://openalex.org/F4320321001","funder_display_name":"National Natural Science Foundation of China","award_id":"62066031"},{"funder":"https://openalex.org/F4320321001","funder_display_name":"National Natural Science Foundation of China","award_id":"61866025"},{"funder":"https://openalex.org/F4320322665","funder_display_name":"Natural Science Foundation of Jiangxi Province","award_id":"20181BAB202025"}],"datasets":[],"versions":[],"referenced_works_count":46,"referenced_works":["https://openalex.org/W1493761729","https://openalex.org/W1522538275","https://openalex.org/W1588375755","https://openalex.org/W1856614156","https://openalex.org/W2022485595","https://openalex.org/W2038420231","https://openalex.org/W2040622444","https://openalex.org/W2067544246","https://openalex.org/W2071694551","https://openalex.org/W2072661909","https://openalex.org/W2102365077","https://openalex.org/W2108968575","https://openalex.org/W2143185749","https://openalex.org/W2143381319","https://openalex.org/W2146446525","https://openalex.org/W225560312","https://openalex.org/W2326149522","https://openalex.org/W2343601797","https://openalex.org/W2405688792","https://openalex.org/W2466060750","https://openalex.org/W2469950730","https://openalex.org/W2512033555","https://openalex.org/W2576493746","https://openalex.org/W2594575977","https://openalex.org/W2599937626","https://openalex.org/W2616650140","https://openalex.org/W2762482744","https://openalex.org/W2762996449","https://openalex.org/W2764251381","https://openalex.org/W2766433627","https://openalex.org/W2790137653","https://openalex.org/W2805082189","https://openalex.org/W2806920391","https://openalex.org/W2808807389","https://openalex.org/W2888338796","https://openalex.org/W2889171665","https://openalex.org/W2889750846","https://openalex.org/W2903944857","https://openalex.org/W2908622156","https://openalex.org/W2942945914","https://openalex.org/W2947517374","https://openalex.org/W2963185242","https://openalex.org/W2963586865","https://openalex.org/W2995951700","https://openalex.org/W3008091456","https://openalex.org/W3033451330"],"related_works":["https://openalex.org/W85101999","https://openalex.org/W4297582752","https://openalex.org/W4285805405","https://openalex.org/W4241467429","https://openalex.org/W3178075962","https://openalex.org/W2977596624","https://openalex.org/W2906115061","https://openalex.org/W2090178682","https://openalex.org/W2073147994","https://openalex.org/W2001591765"],"abstract_inverted_index":{"The":[0,139],"evolutionary":[1,47,147],"algorithms":[2,27,148],"for":[3,49,130],"many-objective":[4,146,176],"optimization":[5,21,32,51,177],"based":[6,52,118,149],"on":[7,19,31,53,119,150,155,175],"reference-point":[8,151],"decomposition":[9,154],"are":[10,76],"widely":[11],"concerned":[12],"since":[13],"they":[14],"generally":[15],"maintain":[16],"good":[17],"performance":[18,174],"many":[20],"problems,":[22],"however,":[23],"most":[24],"of":[25,37,67,73,98,182],"these":[26],"show":[28],"insufficient":[29],"versatility":[30],"problems":[33,178],"with":[34,144,159,179],"various":[35,180],"types":[36,181],"Pareto":[38,183],"fronts.":[39],"To":[40],"address":[41],"this":[42],"issue,":[43],"we":[44],"propose":[45],"an":[46],"algorithm":[48,141],"manyobjective":[50],"indicator":[54,124],"and":[55,113,125,152,185,192],"vector-angle":[56],"decomposition,":[57],"termed":[58],"IVAD.":[59],"In":[60],"the":[61,64,81,86,92,109,115,134,168,187],"proposed":[62,129,140,169],"algorithm,":[63],"objective":[65,83],"vectors":[66],"current":[68],"population,":[69],"as":[70],"a":[71],"set":[72],"reference":[74],"vectors,":[75],"used":[77],"to":[78,102,107,161,189],"dynamically":[79],"partition":[80],"whole":[82],"space.":[84],"And":[85],"max-min-vector-angle":[87],"selection":[88],"strategy,":[89],"by":[90],"calculating":[91],"vector":[93,126],"angles":[94],"between":[95,111],"each":[96,131],"pair":[97],"solutions,":[99],"is":[100,128,142],"constructed":[101],"select":[103],"well-diversity":[104],"solutions.":[105],"Furthermore,":[106],"enhance":[108],"balance":[110,190],"convergence":[112,191],"diversity,":[114],"elite":[116],"replacement,":[117],"I":[120],"\u03b5+":[123],"angle,":[127],"cluster":[132],"that":[133,167],"selected":[135],"individuals":[136],"belong":[137],"to.":[138],"compared":[143],"state-of-the-art":[145],"vectorangle":[153],"three":[156],"test":[157],"suites":[158],"up":[160],"15":[162],"objectives.":[163],"Experimental":[164],"results":[165],"demonstrate":[166],"IVAD":[170],"obtains":[171],"more":[172],"competitive":[173],"fronts,":[184],"enhances":[186],"ability":[188],"diversity.":[193]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W3094387186","counts_by_year":[{"year":2021,"cited_by_count":1}],"updated_date":"2024-12-10T17:18:46.131211","created_date":"2020-10-29"}