{"id":"https://openalex.org/W3089838827","doi":"https://doi.org/10.1109/access.2020.3027794","title":"An Approach to Detecting Diabetic Retinopathy Based on Integrated Shallow Convolutional Neural Networks","display_name":"An Approach to Detecting Diabetic Retinopathy Based on Integrated Shallow Convolutional Neural Networks","publication_year":2020,"publication_date":"2020-01-01","ids":{"openalex":"https://openalex.org/W3089838827","doi":"https://doi.org/10.1109/access.2020.3027794","mag":"3089838827"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1109/access.2020.3027794","pdf_url":"https://ieeexplore.ieee.org/ielx7/6287639/8948470/09208666.pdf","source":{"id":"https://openalex.org/S2485537415","display_name":"IEEE Access","issn_l":"2169-3536","issn":["2169-3536"],"is_oa":true,"is_in_doaj":true,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310319808","host_organization_name":"Institute of Electrical and Electronics Engineers","host_organization_lineage":["https://openalex.org/P4310319808"],"host_organization_lineage_names":["Institute of Electrical and Electronics Engineers"],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},"type":"article","type_crossref":"journal-article","indexed_in":["crossref","doaj"],"open_access":{"is_oa":true,"oa_status":"gold","oa_url":"https://ieeexplore.ieee.org/ielx7/6287639/8948470/09208666.pdf","any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5046558187","display_name":"Wanghu Chen","orcid":"https://orcid.org/0000-0002-9233-7609"},"institutions":[{"id":"https://openalex.org/I68986083","display_name":"Northwest Normal University","ror":"https://ror.org/00gx3j908","country_code":"CN","type":"funder","lineage":["https://openalex.org/I68986083"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Wanghu Chen","raw_affiliation_strings":["Institute of Computer Science and Engineering, Northwest Normal University, Lanzhou, China"],"affiliations":[{"raw_affiliation_string":"Institute of Computer Science and Engineering, Northwest Normal University, Lanzhou, China","institution_ids":["https://openalex.org/I68986083"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5072820962","display_name":"Bo Yang","orcid":"https://orcid.org/0000-0002-3183-5567"},"institutions":[{"id":"https://openalex.org/I68986083","display_name":"Northwest Normal University","ror":"https://ror.org/00gx3j908","country_code":"CN","type":"funder","lineage":["https://openalex.org/I68986083"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Bo Yang","raw_affiliation_strings":["Institute of Computer Science and Engineering, Northwest Normal University, Lanzhou, China"],"affiliations":[{"raw_affiliation_string":"Institute of Computer Science and Engineering, Northwest Normal University, Lanzhou, China","institution_ids":["https://openalex.org/I68986083"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5101713430","display_name":"Jing Li","orcid":"https://orcid.org/0000-0001-8400-7610"},"institutions":[{"id":"https://openalex.org/I68986083","display_name":"Northwest Normal University","ror":"https://ror.org/00gx3j908","country_code":"CN","type":"funder","lineage":["https://openalex.org/I68986083"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Jing Li","raw_affiliation_strings":["Institute of Computer Science and Engineering, Northwest Normal University, Lanzhou, China"],"affiliations":[{"raw_affiliation_string":"Institute of Computer Science and Engineering, Northwest Normal University, Lanzhou, China","institution_ids":["https://openalex.org/I68986083"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5101750217","display_name":"Jianwu Wang","orcid":"https://orcid.org/0000-0002-9933-1170"},"institutions":[{"id":"https://openalex.org/I79272384","display_name":"University of Maryland, Baltimore County","ror":"https://ror.org/02qskvh78","country_code":"US","type":"funder","lineage":["https://openalex.org/I79272384"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Jianwu Wang","raw_affiliation_strings":["University of Maryland, Baltimore County, Baltimore, MD, USA"],"affiliations":[{"raw_affiliation_string":"University of Maryland, Baltimore County, Baltimore, MD, USA","institution_ids":["https://openalex.org/I79272384"]}]}],"institution_assertions":[],"countries_distinct_count":2,"institutions_distinct_count":2,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":{"value":1850,"currency":"USD","value_usd":1850},"apc_paid":{"value":1850,"currency":"USD","value_usd":1850},"fwci":5.234,"has_fulltext":true,"fulltext_origin":"pdf","cited_by_count":67,"citation_normalized_percentile":{"value":0.865597,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":97,"max":98},"biblio":{"volume":"8","issue":null,"first_page":"178552","last_page":"178562"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11438","display_name":"Retinal Imaging and Analysis","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/2741","display_name":"Radiology, Nuclear Medicine and Imaging"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}},"topics":[{"id":"https://openalex.org/T11438","display_name":"Retinal Imaging and Analysis","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/2741","display_name":"Radiology, Nuclear Medicine and Imaging"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}},{"id":"https://openalex.org/T12702","display_name":"Brain Tumor Detection and Classification","score":0.9943,"subfield":{"id":"https://openalex.org/subfields/2808","display_name":"Neurology"},"field":{"id":"https://openalex.org/fields/28","display_name":"Neuroscience"},"domain":{"id":"https://openalex.org/domains/1","display_name":"Life Sciences"}},{"id":"https://openalex.org/T11396","display_name":"Artificial Intelligence in Healthcare","score":0.9921,"subfield":{"id":"https://openalex.org/subfields/3605","display_name":"Health Information Management"},"field":{"id":"https://openalex.org/fields/36","display_name":"Health Professions"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}}],"keywords":[],"concepts":[{"id":"https://openalex.org/C81363708","wikidata":"https://www.wikidata.org/wiki/Q17084460","display_name":"Convolutional neural network","level":2,"score":0.8139366},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.68663275},{"id":"https://openalex.org/C2779829184","wikidata":"https://www.wikidata.org/wiki/Q631361","display_name":"Diabetic retinopathy","level":3,"score":0.6352211},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.39819413},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.3337581},{"id":"https://openalex.org/C555293320","wikidata":"https://www.wikidata.org/wiki/Q12206","display_name":"Diabetes mellitus","level":2,"score":0.20244962},{"id":"https://openalex.org/C71924100","wikidata":"https://www.wikidata.org/wiki/Q11190","display_name":"Medicine","level":0,"score":0.19576922},{"id":"https://openalex.org/C134018914","wikidata":"https://www.wikidata.org/wiki/Q162606","display_name":"Endocrinology","level":1,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":true,"landing_page_url":"https://doi.org/10.1109/access.2020.3027794","pdf_url":"https://ieeexplore.ieee.org/ielx7/6287639/8948470/09208666.pdf","source":{"id":"https://openalex.org/S2485537415","display_name":"IEEE Access","issn_l":"2169-3536","issn":["2169-3536"],"is_oa":true,"is_in_doaj":true,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310319808","host_organization_name":"Institute of Electrical and Electronics Engineers","host_organization_lineage":["https://openalex.org/P4310319808"],"host_organization_lineage_names":["Institute of Electrical and Electronics Engineers"],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},{"is_oa":false,"landing_page_url":"https://doaj.org/article/fab055ca1012423d97f28eb7a44caf5a","pdf_url":null,"source":{"id":"https://openalex.org/S4306401280","display_name":"DOAJ (DOAJ: Directory of Open Access Journals)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"repository"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1109/access.2020.3027794","pdf_url":"https://ieeexplore.ieee.org/ielx7/6287639/8948470/09208666.pdf","source":{"id":"https://openalex.org/S2485537415","display_name":"IEEE Access","issn_l":"2169-3536","issn":["2169-3536"],"is_oa":true,"is_in_doaj":true,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310319808","host_organization_name":"Institute of Electrical and Electronics Engineers","host_organization_lineage":["https://openalex.org/P4310319808"],"host_organization_lineage_names":["Institute of Electrical and Electronics Engineers"],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},"sustainable_development_goals":[],"grants":[{"funder":"https://openalex.org/F4320321001","funder_display_name":"National Natural Science Foundation of China","award_id":"61462076"},{"funder":"https://openalex.org/F4320321001","funder_display_name":"National Natural Science Foundation of China","award_id":"61967013"}],"datasets":[],"versions":[],"referenced_works_count":37,"referenced_works":["https://openalex.org/W1665214252","https://openalex.org/W1836465849","https://openalex.org/W2021137987","https://openalex.org/W2029952239","https://openalex.org/W2081178133","https://openalex.org/W2095705004","https://openalex.org/W2097117768","https://openalex.org/W2108598243","https://openalex.org/W2118783153","https://openalex.org/W2144354855","https://openalex.org/W2145072179","https://openalex.org/W2151103935","https://openalex.org/W2163352848","https://openalex.org/W2163605009","https://openalex.org/W2171651020","https://openalex.org/W2248723555","https://openalex.org/W2481271618","https://openalex.org/W2533800772","https://openalex.org/W2551596518","https://openalex.org/W2592949994","https://openalex.org/W2765921511","https://openalex.org/W2786997313","https://openalex.org/W2790522845","https://openalex.org/W2890672115","https://openalex.org/W2936060459","https://openalex.org/W2944614944","https://openalex.org/W2965099813","https://openalex.org/W2978135519","https://openalex.org/W2979800405","https://openalex.org/W2979927758","https://openalex.org/W2980441947","https://openalex.org/W2980444207","https://openalex.org/W2980872133","https://openalex.org/W3004319599","https://openalex.org/W3011922579","https://openalex.org/W3026988863","https://openalex.org/W4244691969"],"related_works":["https://openalex.org/W4396701345","https://openalex.org/W4391913857","https://openalex.org/W4391375266","https://openalex.org/W2899084033","https://openalex.org/W2748952813","https://openalex.org/W2390279801","https://openalex.org/W2376932109","https://openalex.org/W2358668433","https://openalex.org/W2042327336","https://openalex.org/W2033914206"],"abstract_inverted_index":{"The":[0,211],"early":[1],"detection":[2,33],"of":[3,38,50,152,220,235,246],"Diabetic":[4],"Retinopathy":[5],"(DR)":[6],"is":[7,67,117,127,146],"critical":[8],"for":[9],"diabetics":[10],"to":[11,29,57,71,76,105,107,119,133,142,197,243],"lower":[12],"the":[13,83,150,165,170,184,187,192,217,221,228,236,249],"blindness":[14],"risks.":[15],"Many":[16],"studies":[17],"represent":[18],"that":[19,126,247],"Deep":[20],"Convolutional":[21],"Neural":[22],"Network":[23],"(CNN)":[24],"based":[25,124,148],"approaches":[26,41,203],"are":[27],"effective":[28,129],"enable":[30],"automatic":[31],"DR":[32],"through":[34],"classifying":[35],"retinal":[36,51,135,143],"images":[37,52,75],"patients.":[39],"Such":[40],"usually":[42],"depend":[43],"on":[44,110,130,149,157,162,227,248],"a":[45,87,111,121],"very":[46],"large":[47,112],"dataset":[48,230],"composed":[49],"with":[53,176,200],"predefined":[54],"classification":[55,145,171,193,218],"labels":[56],"support":[58],"their":[59],"CNN":[60,88,123,180],"training.":[61],"However,":[62],"in":[63],"some":[64],"occasions,":[65],"it":[66,116],"not":[68,94],"so":[69],"easy":[70],"get":[72],"enough":[73],"well-labelled":[74],"act":[77],"as":[78,205],"model":[79],"training":[80,92,113],"samples.":[81],"At":[82],"same":[84],"time,":[85,99],"when":[86],"becomes":[89],"deeper,":[90],"its":[91,239],"will":[93],"only":[95,232],"take":[96],"much":[97],"longer":[98],"but":[100],"also":[101,213],"be":[102],"more":[103],"likely":[104],"lead":[106],"overfitting,":[108],"especially":[109],"dataset.":[114,251],"Therefore,":[115],"meaningful":[118],"explore":[120],"simpler":[122],"approach":[125,141,167,189,223],"still":[128],"small":[131,163],"datasets":[132,159],"classify":[134],"images.":[136],"In":[137],"this":[138],"paper,":[139],"an":[140],"image":[144],"proposed":[147,166,188,222],"integration":[151],"multi-scale":[153],"shallow":[154],"CNNs.":[155],"Experiments":[156],"public":[158],"show":[160],"that,":[161,215],"datasets,":[164],"can":[168,190],"improve":[169,191],"accuracy":[172,194,219],"by":[173,195,225],"3%":[174,196],"compared":[175,199],"current":[177],"representative":[178,202],"integrated":[179],"learning":[181],"approaches.":[182],"On":[183],"bigger":[185],"dataset,":[186,238],"9%":[198],"other":[201],"such":[204],"traditional":[206],"CNN,":[207],"LCNN":[208],"and":[209],"VGG16noFC.":[210],"evaluation":[212],"represents":[214],"though":[216],"declines":[224,242],"6%":[226],"smallest":[229],"containing":[231],"10%":[233],"samples":[234],"original":[237,250],"time":[240],"cost":[241],"about":[244],"30%":[245]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W3089838827","counts_by_year":[{"year":2025,"cited_by_count":2},{"year":2024,"cited_by_count":18},{"year":2023,"cited_by_count":18},{"year":2022,"cited_by_count":24},{"year":2021,"cited_by_count":5}],"updated_date":"2025-05-04T16:24:44.350497","created_date":"2020-10-08"}