{"id":"https://openalex.org/W3035680081","doi":"https://doi.org/10.1109/access.2020.3000506","title":"An Improved Faster R-CNN for High-Speed Railway Dropper Detection","display_name":"An Improved Faster R-CNN for High-Speed Railway Dropper Detection","publication_year":2020,"publication_date":"2020-01-01","ids":{"openalex":"https://openalex.org/W3035680081","doi":"https://doi.org/10.1109/access.2020.3000506","mag":"3035680081"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1109/access.2020.3000506","pdf_url":"https://ieeexplore.ieee.org/ielx7/6287639/8948470/09110596.pdf","source":{"id":"https://openalex.org/S2485537415","display_name":"IEEE Access","issn_l":"2169-3536","issn":["2169-3536"],"is_oa":true,"is_in_doaj":true,"is_core":true,"host_organization":"https://openalex.org/P4310319808","host_organization_name":"Institute of Electrical and Electronics Engineers","host_organization_lineage":["https://openalex.org/P4310319808"],"host_organization_lineage_names":["Institute of Electrical and Electronics Engineers"],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},"type":"article","type_crossref":"journal-article","indexed_in":["crossref","doaj"],"open_access":{"is_oa":true,"oa_status":"gold","oa_url":"https://ieeexplore.ieee.org/ielx7/6287639/8948470/09110596.pdf","any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5018547832","display_name":"Qifan Guo","orcid":"https://orcid.org/0000-0002-3643-7808"},"institutions":[{"id":"https://openalex.org/I87445476","display_name":"Xi'an Jiaotong University","ror":"https://ror.org/017zhmm22","country_code":"CN","type":"education","lineage":["https://openalex.org/I87445476"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Qifan Guo","raw_affiliation_strings":["National Engineering Laboratory for Big Data Analytics, Xi'an Jiaotong University, Xi'an, China","School of Mathematics and Statistics, Xi'an Jiaotong University, Xi'an, China"],"affiliations":[{"raw_affiliation_string":"National Engineering Laboratory for Big Data Analytics, Xi'an Jiaotong University, Xi'an, China","institution_ids":["https://openalex.org/I87445476"]},{"raw_affiliation_string":"School of Mathematics and Statistics, Xi'an Jiaotong University, Xi'an, China","institution_ids":["https://openalex.org/I87445476"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100349542","display_name":"Lei Liu","orcid":"https://orcid.org/0000-0002-3027-9255"},"institutions":[{"id":"https://openalex.org/I87445476","display_name":"Xi'an Jiaotong University","ror":"https://ror.org/017zhmm22","country_code":"CN","type":"education","lineage":["https://openalex.org/I87445476"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Lei Liu","raw_affiliation_strings":["National Engineering Laboratory for Big Data Analytics, Xi'an Jiaotong University, Xi'an, China","School of Mathematics and Statistics, Xi'an Jiaotong University, Xi'an, China"],"affiliations":[{"raw_affiliation_string":"National Engineering Laboratory for Big Data Analytics, Xi'an Jiaotong University, Xi'an, China","institution_ids":["https://openalex.org/I87445476"]},{"raw_affiliation_string":"School of Mathematics and Statistics, Xi'an Jiaotong University, Xi'an, China","institution_ids":["https://openalex.org/I87445476"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100736901","display_name":"Wenjuan Xu","orcid":"https://orcid.org/0000-0001-9790-779X"},"institutions":[{"id":"https://openalex.org/I87445476","display_name":"Xi'an Jiaotong University","ror":"https://ror.org/017zhmm22","country_code":"CN","type":"education","lineage":["https://openalex.org/I87445476"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Wenjuan Xu","raw_affiliation_strings":["National Engineering Laboratory for Big Data Analytics, Xi'an Jiaotong University, Xi'an, China","School of Mathematics and Statistics, Xi'an Jiaotong University, Xi'an, China"],"affiliations":[{"raw_affiliation_string":"School of Mathematics and Statistics, Xi'an Jiaotong University, Xi'an, China","institution_ids":["https://openalex.org/I87445476"]},{"raw_affiliation_string":"National Engineering Laboratory for Big Data Analytics, Xi'an Jiaotong University, Xi'an, China","institution_ids":["https://openalex.org/I87445476"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5090756097","display_name":"Yansheng Gong","orcid":"https://orcid.org/0000-0002-5244-467X"},"institutions":[{"id":"https://openalex.org/I4210107208","display_name":"China Railway Fifth Survey and Design Institute Group","ror":"https://ror.org/01rb6gh35","country_code":"CN","type":"facility","lineage":["https://openalex.org/I4210107208"]},{"id":"https://openalex.org/I4391768287","display_name":"China Railway First Survey and Design Institute Group Co. Ltd.","ror":"https://ror.org/03qfm6382","country_code":null,"type":"facility","lineage":["https://openalex.org/I4391768287"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Yansheng Gong","raw_affiliation_strings":["China Railway First Survey and Design Institute Group Company, Ltd., Xi'an, China"],"affiliations":[{"raw_affiliation_string":"China Railway First Survey and Design Institute Group Company, Ltd., Xi'an, China","institution_ids":["https://openalex.org/I4210107208","https://openalex.org/I4391768287"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100768034","display_name":"Xuewu Zhang","orcid":"https://orcid.org/0000-0002-0265-3967"},"institutions":[{"id":"https://openalex.org/I4210107208","display_name":"China Railway Fifth Survey and Design Institute Group","ror":"https://ror.org/01rb6gh35","country_code":"CN","type":"facility","lineage":["https://openalex.org/I4210107208"]},{"id":"https://openalex.org/I4391768287","display_name":"China Railway First Survey and Design Institute Group Co. Ltd.","ror":"https://ror.org/03qfm6382","country_code":null,"type":"facility","lineage":["https://openalex.org/I4391768287"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Xuewu Zhang","raw_affiliation_strings":["China Railway First Survey and Design Institute Group Company, Ltd., Xi'an, China"],"affiliations":[{"raw_affiliation_string":"China Railway First Survey and Design Institute Group Company, Ltd., Xi'an, China","institution_ids":["https://openalex.org/I4210107208","https://openalex.org/I4391768287"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5042606235","display_name":"Wenfeng Jing","orcid":"https://orcid.org/0000-0003-0362-8728"},"institutions":[{"id":"https://openalex.org/I87445476","display_name":"Xi'an Jiaotong University","ror":"https://ror.org/017zhmm22","country_code":"CN","type":"education","lineage":["https://openalex.org/I87445476"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Wenfeng Jing","raw_affiliation_strings":["National Engineering Laboratory for Big Data Analytics, Xi'an Jiaotong University, Xi'an, China","School of Mathematics and Statistics, Xi'an Jiaotong University, Xi'an, China"],"affiliations":[{"raw_affiliation_string":"National Engineering Laboratory for Big Data Analytics, Xi'an Jiaotong University, Xi'an, China","institution_ids":["https://openalex.org/I87445476"]},{"raw_affiliation_string":"School of Mathematics and Statistics, Xi'an Jiaotong University, Xi'an, China","institution_ids":["https://openalex.org/I87445476"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":3,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":{"value":1850,"currency":"USD","value_usd":1850,"provenance":"doaj"},"apc_paid":{"value":1850,"currency":"USD","value_usd":1850,"provenance":"doaj"},"fwci":3.401,"has_fulltext":true,"fulltext_origin":"pdf","cited_by_count":31,"citation_normalized_percentile":{"value":0.999973,"is_in_top_1_percent":true,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":95,"max":96},"biblio":{"volume":"8","issue":null,"first_page":"105622","last_page":"105633"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T12371","display_name":"Electrical Contact Performance and Analysis","score":0.9991,"subfield":{"id":"https://openalex.org/subfields/2210","display_name":"Mechanical Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T12371","display_name":"Electrical Contact Performance and Analysis","score":0.9991,"subfield":{"id":"https://openalex.org/subfields/2210","display_name":"Mechanical Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10842","display_name":"Railway Engineering and Dynamics","score":0.9968,"subfield":{"id":"https://openalex.org/subfields/2210","display_name":"Mechanical Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11398","display_name":"Hand Gesture Recognition Systems","score":0.979,"subfield":{"id":"https://openalex.org/subfields/1709","display_name":"Human-Computer Interaction"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/minimum-bounding-box","display_name":"Minimum bounding box","score":0.67170256},{"id":"https://openalex.org/keywords/feature","display_name":"Feature (linguistics)","score":0.6460673},{"id":"https://openalex.org/keywords/pyramid","display_name":"Pyramid (geometry)","score":0.44465873},{"id":"https://openalex.org/keywords/backpropagation","display_name":"Backpropagation","score":0.42856455}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.7352813},{"id":"https://openalex.org/C147037132","wikidata":"https://www.wikidata.org/wiki/Q6865426","display_name":"Minimum bounding box","level":3,"score":0.67170256},{"id":"https://openalex.org/C2776401178","wikidata":"https://www.wikidata.org/wiki/Q12050496","display_name":"Feature (linguistics)","level":2,"score":0.6460673},{"id":"https://openalex.org/C190839683","wikidata":"https://www.wikidata.org/wiki/Q2448197","display_name":"Train","level":2,"score":0.5805032},{"id":"https://openalex.org/C2779960059","wikidata":"https://www.wikidata.org/wiki/Q7113681","display_name":"Overhead (engineering)","level":2,"score":0.49869514},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.48896015},{"id":"https://openalex.org/C142575187","wikidata":"https://www.wikidata.org/wiki/Q3358290","display_name":"Pyramid (geometry)","level":2,"score":0.44465873},{"id":"https://openalex.org/C163258240","wikidata":"https://www.wikidata.org/wiki/Q25342","display_name":"Power (physics)","level":2,"score":0.43893927},{"id":"https://openalex.org/C52622490","wikidata":"https://www.wikidata.org/wiki/Q1026626","display_name":"Feature extraction","level":2,"score":0.43834868},{"id":"https://openalex.org/C155032097","wikidata":"https://www.wikidata.org/wiki/Q798503","display_name":"Backpropagation","level":3,"score":0.42856455},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.3852337},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.35198793},{"id":"https://openalex.org/C115961682","wikidata":"https://www.wikidata.org/wiki/Q860623","display_name":"Image (mathematics)","level":2,"score":0.20934337},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.08415854},{"id":"https://openalex.org/C138885662","wikidata":"https://www.wikidata.org/wiki/Q5891","display_name":"Philosophy","level":0,"score":0.0},{"id":"https://openalex.org/C41895202","wikidata":"https://www.wikidata.org/wiki/Q8162","display_name":"Linguistics","level":1,"score":0.0},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C58640448","wikidata":"https://www.wikidata.org/wiki/Q42515","display_name":"Cartography","level":1,"score":0.0},{"id":"https://openalex.org/C62520636","wikidata":"https://www.wikidata.org/wiki/Q944","display_name":"Quantum mechanics","level":1,"score":0.0},{"id":"https://openalex.org/C205649164","wikidata":"https://www.wikidata.org/wiki/Q1071","display_name":"Geography","level":0,"score":0.0},{"id":"https://openalex.org/C2524010","wikidata":"https://www.wikidata.org/wiki/Q8087","display_name":"Geometry","level":1,"score":0.0},{"id":"https://openalex.org/C111919701","wikidata":"https://www.wikidata.org/wiki/Q9135","display_name":"Operating system","level":1,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":true,"landing_page_url":"https://doi.org/10.1109/access.2020.3000506","pdf_url":"https://ieeexplore.ieee.org/ielx7/6287639/8948470/09110596.pdf","source":{"id":"https://openalex.org/S2485537415","display_name":"IEEE Access","issn_l":"2169-3536","issn":["2169-3536"],"is_oa":true,"is_in_doaj":true,"is_core":true,"host_organization":"https://openalex.org/P4310319808","host_organization_name":"Institute of Electrical and Electronics Engineers","host_organization_lineage":["https://openalex.org/P4310319808"],"host_organization_lineage_names":["Institute of Electrical and Electronics Engineers"],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},{"is_oa":false,"landing_page_url":"https://doaj.org/article/d608829a6ddb4cd5abae4ac621ef4322","pdf_url":null,"source":{"id":"https://openalex.org/S4306401280","display_name":"DOAJ (DOAJ: Directory of Open Access Journals)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"repository"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1109/access.2020.3000506","pdf_url":"https://ieeexplore.ieee.org/ielx7/6287639/8948470/09110596.pdf","source":{"id":"https://openalex.org/S2485537415","display_name":"IEEE Access","issn_l":"2169-3536","issn":["2169-3536"],"is_oa":true,"is_in_doaj":true,"is_core":true,"host_organization":"https://openalex.org/P4310319808","host_organization_name":"Institute of Electrical and Electronics Engineers","host_organization_lineage":["https://openalex.org/P4310319808"],"host_organization_lineage_names":["Institute of Electrical and Electronics Engineers"],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":43,"referenced_works":["https://openalex.org/W1536680647","https://openalex.org/W1555177212","https://openalex.org/W1686810756","https://openalex.org/W1861492603","https://openalex.org/W2102605133","https://openalex.org/W2108598243","https://openalex.org/W2109255472","https://openalex.org/W2112796928","https://openalex.org/W2163605009","https://openalex.org/W2186094539","https://openalex.org/W2186306742","https://openalex.org/W2194775991","https://openalex.org/W2555344168","https://openalex.org/W2565639579","https://openalex.org/W2570343428","https://openalex.org/W2613718673","https://openalex.org/W2737725206","https://openalex.org/W2752782242","https://openalex.org/W2884585870","https://openalex.org/W2894675256","https://openalex.org/W2899526967","https://openalex.org/W2911543579","https://openalex.org/W2912130719","https://openalex.org/W2941177490","https://openalex.org/W2951454267","https://openalex.org/W2954942335","https://openalex.org/W2958493567","https://openalex.org/W2963037989","https://openalex.org/W2963179609","https://openalex.org/W2963351448","https://openalex.org/W2963420686","https://openalex.org/W2963495494","https://openalex.org/W2963785947","https://openalex.org/W2963857746","https://openalex.org/W2964241181","https://openalex.org/W2964479623","https://openalex.org/W2974032590","https://openalex.org/W2995024218","https://openalex.org/W2997747012","https://openalex.org/W3000916382","https://openalex.org/W3106250896","https://openalex.org/W4293584584","https://openalex.org/W639708223"],"related_works":["https://openalex.org/W618248309","https://openalex.org/W589102260","https://openalex.org/W4390419160","https://openalex.org/W4239286941","https://openalex.org/W3197089899","https://openalex.org/W2377336366","https://openalex.org/W2088845016","https://openalex.org/W2075798043","https://openalex.org/W1601203902","https://openalex.org/W1568097102"],"abstract_inverted_index":{"Overhead":[0],"contact":[1],"systems":[2],"(OCSs)":[3],"are":[4,74],"the":[5,18,30,34,38,51,84,91,100,104,125,143,148,162,168,185,200,207,211,216,224,234,237,250,253,256,259,273],"power":[6,52],"supply":[7,53],"facility":[8],"of":[9,20,33,37,103,124,128,158,161,171,191,236,258],"high-speed":[10,21],"trains":[11],"and":[12,43,89,97,119,227,245,263,268],"plays":[13],"a":[14,47,80,132,176,195],"vital":[15],"role":[16],"in":[17,77],"operation":[19],"trains.":[22],"The":[23,122],"dropper":[24],"is":[25,64,86,139,182],"an":[26,65,110],"important":[27],"guarantee":[28],"for":[29],"suspension":[31],"system":[32],"OCS.":[35],"Faults":[36],"dropper,":[39],"such":[40],"as":[41,184],"slack":[42],"breakage,":[44],"can":[45,116],"cause":[46],"certain":[48],"threat":[49],"to":[50,56,61,69,83,87,141,166,206],"system.":[54],"How":[55],"use":[57],"artificial":[58],"intelligence":[59],"technologies":[60],"detect":[62],"faults":[63],"urgent":[66],"technical":[67],"problem":[68,85],"be":[70],"solved.":[71],"Because":[72],"droppers":[73,92],"very":[75],"small":[76],"whole":[78],"images,":[79],"feasible":[81],"solution":[82],"identify":[88,99,118],"locate":[90,120],"first,":[93],"then":[94,98],"segment":[95],"them,":[96],"fault":[101],"type":[102],"segmented":[105],"droppers.":[106,121],"This":[107],"paper":[108],"proposes":[109],"improved":[111,217,260],"Faster":[112,192,218,261],"R-CNN":[113,219,262],"algorithm":[114],"that":[115],"accurately":[117],"innovations":[123],"method":[126],"consist":[127],"two":[129],"parts.":[130],"First,":[131],"balanced":[133],"attention":[134,149,242],"feature":[135,153,156,163,243],"pyramid":[136,164],"network":[137,165,239],"(BA-FPN)":[138],"used":[140],"predict":[142],"detection":[144],"anchor.":[145],"Based":[146],"on":[147,155,223],"mechanism,":[150],"BA-FPN":[151],"performs":[152],"fusion":[154,244],"maps":[157],"different":[159],"levels":[160],"balance":[167],"original":[169],"features":[170],"each":[172],"layer.":[173],"After":[174],"that,":[175],"center-point":[177,196,246],"rectangle":[178,197,247],"loss":[179,189],"(CR":[180],"Loss)":[181],"designed":[183],"bounding":[186],"box":[187,202,209],"regression":[188],"function":[190],"R-CNN.":[193],"Through":[194],"penalty":[198],"term,":[199],"anchor":[201],"quickly":[203],"moves":[204],"closer":[205],"ground-truth":[208],"during":[210],"training":[212],"process.":[213],"We":[214],"validate":[215],"through":[220],"extensive":[221],"experiments":[222],"VOC":[225],"2012":[226],"MSCOCO":[228],"2014":[229],"datasets.":[230],"Experimental":[231],"results":[232],"prove":[233],"effectiveness":[235],"proposed":[238],"combined":[240],"with":[241],"loss.":[248],"On":[249],"OCS":[251],"dataset,":[252],"accuracy":[254],"using":[255],"combination":[257],"ResNet-101":[264],"reached":[265],"86.8%":[266],"mAP@0.5":[267],"83.9%":[269],"mAP@0.7,":[270],"which":[271],"was":[272],"best":[274],"performance":[275],"among":[276],"all":[277],"results.":[278]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W3035680081","counts_by_year":[{"year":2024,"cited_by_count":1},{"year":2023,"cited_by_count":9},{"year":2022,"cited_by_count":8},{"year":2021,"cited_by_count":10},{"year":2020,"cited_by_count":3}],"updated_date":"2024-12-24T16:59:23.403064","created_date":"2020-06-19"}