{"id":"https://openalex.org/W3027650734","doi":"https://doi.org/10.1109/access.2020.2996260","title":"Household Power Consumption Prediction Method Based on Selective Ensemble Learning","display_name":"Household Power Consumption Prediction Method Based on Selective Ensemble Learning","publication_year":2020,"publication_date":"2020-01-01","ids":{"openalex":"https://openalex.org/W3027650734","doi":"https://doi.org/10.1109/access.2020.2996260","mag":"3027650734"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1109/access.2020.2996260","pdf_url":"https://ieeexplore.ieee.org/ielx7/6287639/8948470/09097868.pdf","source":{"id":"https://openalex.org/S2485537415","display_name":"IEEE Access","issn_l":"2169-3536","issn":["2169-3536"],"is_oa":true,"is_in_doaj":true,"is_core":true,"host_organization":"https://openalex.org/P4310319808","host_organization_name":"Institute of Electrical and Electronics Engineers","host_organization_lineage":["https://openalex.org/P4310319808"],"host_organization_lineage_names":["Institute of Electrical and Electronics Engineers"],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},"type":"article","type_crossref":"journal-article","indexed_in":["crossref","doaj"],"open_access":{"is_oa":true,"oa_status":"gold","oa_url":"https://ieeexplore.ieee.org/ielx7/6287639/8948470/09097868.pdf","any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5007952996","display_name":"Kun Liang","orcid":"https://orcid.org/0000-0003-3354-6475"},"institutions":[{"id":"https://openalex.org/I132369690","display_name":"Tianjin University of Science and Technology","ror":"https://ror.org/018rbtf37","country_code":"CN","type":"education","lineage":["https://openalex.org/I132369690"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Kun Liang","raw_affiliation_strings":["College of Artificial Intelligence, Tianjin University of Science and Technology, Tianjin, China"],"affiliations":[{"raw_affiliation_string":"College of Artificial Intelligence, Tianjin University of Science and Technology, Tianjin, China","institution_ids":["https://openalex.org/I132369690"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100394615","display_name":"Fei Liu","orcid":"https://orcid.org/0000-0002-3177-3095"},"institutions":[{"id":"https://openalex.org/I132369690","display_name":"Tianjin University of Science and Technology","ror":"https://ror.org/018rbtf37","country_code":"CN","type":"education","lineage":["https://openalex.org/I132369690"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Fei Liu","raw_affiliation_strings":["College of Artificial Intelligence, Tianjin University of Science and Technology, Tianjin, China"],"affiliations":[{"raw_affiliation_string":"College of Artificial Intelligence, Tianjin University of Science and Technology, Tianjin, China","institution_ids":["https://openalex.org/I132369690"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5100741029","display_name":"Yiying Zhang","orcid":"https://orcid.org/0000-0003-2131-1257"},"institutions":[{"id":"https://openalex.org/I132369690","display_name":"Tianjin University of Science and Technology","ror":"https://ror.org/018rbtf37","country_code":"CN","type":"education","lineage":["https://openalex.org/I132369690"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Yiying Zhang","raw_affiliation_strings":["College of Artificial Intelligence, Tianjin University of Science and Technology, Tianjin, China"],"affiliations":[{"raw_affiliation_string":"College of Artificial Intelligence, Tianjin University of Science and Technology, Tianjin, China","institution_ids":["https://openalex.org/I132369690"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":{"value":1850,"currency":"USD","value_usd":1850,"provenance":"doaj"},"apc_paid":{"value":1850,"currency":"USD","value_usd":1850,"provenance":"doaj"},"fwci":0.556,"has_fulltext":true,"fulltext_origin":"pdf","cited_by_count":8,"citation_normalized_percentile":{"value":0.587286,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":84,"max":85},"biblio":{"volume":"8","issue":null,"first_page":"95657","last_page":"95666"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11052","display_name":"Energy Load and Power Forecasting","score":0.9967,"subfield":{"id":"https://openalex.org/subfields/2208","display_name":"Electrical and Electronic Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11052","display_name":"Energy Load and Power Forecasting","score":0.9967,"subfield":{"id":"https://openalex.org/subfields/2208","display_name":"Electrical and Electronic Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10603","display_name":"Smart Grid Energy Management","score":0.9806,"subfield":{"id":"https://openalex.org/subfields/2208","display_name":"Electrical and Electronic Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11344","display_name":"Traffic Prediction and Management Techniques","score":0.9654,"subfield":{"id":"https://openalex.org/subfields/2215","display_name":"Building and Construction"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/ensemble-learning","display_name":"Ensemble Learning","score":0.75531936},{"id":"https://openalex.org/keywords/ensemble-forecasting","display_name":"Ensemble forecasting","score":0.5636503},{"id":"https://openalex.org/keywords/consumption","display_name":"Consumption","score":0.55115265},{"id":"https://openalex.org/keywords/predictive-modelling","display_name":"Predictive modelling","score":0.4217267}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.79006183},{"id":"https://openalex.org/C73555534","wikidata":"https://www.wikidata.org/wiki/Q622825","display_name":"Cluster analysis","level":2,"score":0.78782713},{"id":"https://openalex.org/C45942800","wikidata":"https://www.wikidata.org/wiki/Q245652","display_name":"Ensemble learning","level":2,"score":0.75531936},{"id":"https://openalex.org/C2779343474","wikidata":"https://www.wikidata.org/wiki/Q3109175","display_name":"Context (archaeology)","level":2,"score":0.6372951},{"id":"https://openalex.org/C119898033","wikidata":"https://www.wikidata.org/wiki/Q3433888","display_name":"Ensemble forecasting","level":2,"score":0.5636503},{"id":"https://openalex.org/C75684735","wikidata":"https://www.wikidata.org/wiki/Q858810","display_name":"Big data","level":2,"score":0.56257594},{"id":"https://openalex.org/C30772137","wikidata":"https://www.wikidata.org/wiki/Q5164762","display_name":"Consumption (sociology)","level":2,"score":0.55115265},{"id":"https://openalex.org/C2984118289","wikidata":"https://www.wikidata.org/wiki/Q29954","display_name":"Power consumption","level":3,"score":0.51156145},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.50389594},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.49232328},{"id":"https://openalex.org/C163258240","wikidata":"https://www.wikidata.org/wiki/Q25342","display_name":"Power (physics)","level":2,"score":0.437199},{"id":"https://openalex.org/C45804977","wikidata":"https://www.wikidata.org/wiki/Q7239673","display_name":"Predictive modelling","level":2,"score":0.4217267},{"id":"https://openalex.org/C67186912","wikidata":"https://www.wikidata.org/wiki/Q367664","display_name":"Data modeling","level":2,"score":0.42024872},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.41299063},{"id":"https://openalex.org/C77088390","wikidata":"https://www.wikidata.org/wiki/Q8513","display_name":"Database","level":1,"score":0.07594821},{"id":"https://openalex.org/C151730666","wikidata":"https://www.wikidata.org/wiki/Q7205","display_name":"Paleontology","level":1,"score":0.0},{"id":"https://openalex.org/C36289849","wikidata":"https://www.wikidata.org/wiki/Q34749","display_name":"Social science","level":1,"score":0.0},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C62520636","wikidata":"https://www.wikidata.org/wiki/Q944","display_name":"Quantum mechanics","level":1,"score":0.0},{"id":"https://openalex.org/C144024400","wikidata":"https://www.wikidata.org/wiki/Q21201","display_name":"Sociology","level":0,"score":0.0},{"id":"https://openalex.org/C86803240","wikidata":"https://www.wikidata.org/wiki/Q420","display_name":"Biology","level":0,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":true,"landing_page_url":"https://doi.org/10.1109/access.2020.2996260","pdf_url":"https://ieeexplore.ieee.org/ielx7/6287639/8948470/09097868.pdf","source":{"id":"https://openalex.org/S2485537415","display_name":"IEEE Access","issn_l":"2169-3536","issn":["2169-3536"],"is_oa":true,"is_in_doaj":true,"is_core":true,"host_organization":"https://openalex.org/P4310319808","host_organization_name":"Institute of Electrical and Electronics Engineers","host_organization_lineage":["https://openalex.org/P4310319808"],"host_organization_lineage_names":["Institute of Electrical and Electronics Engineers"],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},{"is_oa":false,"landing_page_url":"https://doaj.org/article/1bc9b8f26a0947268c345aeb7745142e","pdf_url":null,"source":{"id":"https://openalex.org/S4306401280","display_name":"DOAJ (DOAJ: Directory of Open Access Journals)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"repository"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1109/access.2020.2996260","pdf_url":"https://ieeexplore.ieee.org/ielx7/6287639/8948470/09097868.pdf","source":{"id":"https://openalex.org/S2485537415","display_name":"IEEE Access","issn_l":"2169-3536","issn":["2169-3536"],"is_oa":true,"is_in_doaj":true,"is_core":true,"host_organization":"https://openalex.org/P4310319808","host_organization_name":"Institute of Electrical and Electronics Engineers","host_organization_lineage":["https://openalex.org/P4310319808"],"host_organization_lineage_names":["Institute of Electrical and Electronics Engineers"],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},"sustainable_development_goals":[{"id":"https://metadata.un.org/sdg/7","display_name":"Affordable and clean energy","score":0.66}],"grants":[{"funder":"https://openalex.org/F4320321001","funder_display_name":"National Natural Science Foundation of China","award_id":"61807024"}],"datasets":[],"versions":[],"referenced_works_count":25,"referenced_works":["https://openalex.org/W1633338417","https://openalex.org/W1953610248","https://openalex.org/W1976507318","https://openalex.org/W1986548159","https://openalex.org/W2051630583","https://openalex.org/W2061881231","https://openalex.org/W2069945715","https://openalex.org/W2116526546","https://openalex.org/W2154228396","https://openalex.org/W2182726434","https://openalex.org/W2417999172","https://openalex.org/W2803241847","https://openalex.org/W2810457141","https://openalex.org/W2888627508","https://openalex.org/W2896980190","https://openalex.org/W2921561210","https://openalex.org/W2943702527","https://openalex.org/W2969740275","https://openalex.org/W2970837126","https://openalex.org/W2976193469","https://openalex.org/W2996846732","https://openalex.org/W2999179616","https://openalex.org/W4250429275","https://openalex.org/W4252286962","https://openalex.org/W432196759"],"related_works":["https://openalex.org/W4390971112","https://openalex.org/W4390905871","https://openalex.org/W3204228978","https://openalex.org/W3202800081","https://openalex.org/W3124390867","https://openalex.org/W3101614107","https://openalex.org/W2794896638","https://openalex.org/W1909207154","https://openalex.org/W1807784185","https://openalex.org/W1514365828"],"abstract_inverted_index":{"In":[0,83,107],"the":[1,6,12,16,32,52,63,92,98,104,108,126,131,139,152],"context":[2],"power":[3,8,37,56,64,94,111],"big":[4],"data,":[5,43],"household":[7,55,93],"consumption":[9,65,112],"data":[10,38,53],"on":[11,51],"user":[13],"side":[14],"has":[15,142],"characteristics":[17],"of":[18,36,42,54,66,110],"large":[19,40],"quantity,":[20],"wide":[21],"distribution":[22],"and":[23,34,46,61,78,96,129,148],"many":[24,47],"types.":[25],"Ensemble":[26,118],"learning":[27,76,155],"is":[28,88,121],"very":[29],"excellent":[30],"in":[31,69,145],"analysis":[33],"mining":[35],"with":[39,80,103],"amount":[41],"strong":[44],"timeliness":[45],"influencing":[48],"factors.":[49,82],"Based":[50],"consumption,":[57,95],"this":[58,84],"paper":[59],"analyzes":[60],"predicts":[62],"some":[67],"users":[68],"a":[70,114],"city":[71],"by":[72],"using":[73],"selective":[74],"ensemble":[75,125,154],"technology":[77],"combining":[79],"meteorological":[81,105],"paper,":[85],"K-means":[86],"algorithm":[87,141],"used":[89],"to":[90,123],"cluster":[91],"then":[97],"clustering":[99],"results":[100,136],"are":[101],"combined":[102],"information.":[106],"stage":[109],"prediction,":[113],"Filter":[115],"Iterative":[116],"Optimization":[117],"Strategy":[119],"(FIOES)":[120],"proposed":[122],"selectively":[124],"basic":[127],"learners":[128],"get":[130],"final":[132],"prediction":[133,149],"model.":[134],"Experimental":[135],"show":[137],"that":[138],"FIOES":[140],"better":[143],"performance":[144],"time":[146],"cost":[147],"accuracy":[150],"than":[151],"traditional":[153],"algorithm.":[156]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W3027650734","counts_by_year":[{"year":2024,"cited_by_count":1},{"year":2023,"cited_by_count":4},{"year":2022,"cited_by_count":2},{"year":2021,"cited_by_count":1}],"updated_date":"2025-01-17T17:25:58.985352","created_date":"2020-05-29"}