{"id":"https://openalex.org/W3021344331","doi":"https://doi.org/10.1109/access.2020.2990901","title":"A Rule-Based Method for Table Detection in Website Images","display_name":"A Rule-Based Method for Table Detection in Website Images","publication_year":2020,"publication_date":"2020-01-01","ids":{"openalex":"https://openalex.org/W3021344331","doi":"https://doi.org/10.1109/access.2020.2990901","mag":"3021344331"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1109/access.2020.2990901","pdf_url":"https://ieeexplore.ieee.org/ielx7/6287639/8948470/09079835.pdf","source":{"id":"https://openalex.org/S2485537415","display_name":"IEEE Access","issn_l":"2169-3536","issn":["2169-3536"],"is_oa":true,"is_in_doaj":true,"is_core":true,"host_organization":"https://openalex.org/P4310319808","host_organization_name":"Institute of Electrical and Electronics Engineers","host_organization_lineage":["https://openalex.org/P4310319808"],"host_organization_lineage_names":["Institute of Electrical and Electronics Engineers"],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},"type":"article","type_crossref":"journal-article","indexed_in":["crossref","doaj"],"open_access":{"is_oa":true,"oa_status":"gold","oa_url":"https://ieeexplore.ieee.org/ielx7/6287639/8948470/09079835.pdf","any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5079001068","display_name":"Jihu Kim","orcid":"https://orcid.org/0000-0002-4491-6438"},"institutions":[{"id":"https://openalex.org/I12832649","display_name":"Gachon University","ror":"https://ror.org/03ryywt80","country_code":"KR","type":"education","lineage":["https://openalex.org/I12832649"]}],"countries":["KR"],"is_corresponding":false,"raw_author_name":"Jihu Kim","raw_affiliation_strings":["Department of Software, Gachon University, Seongnam, South Korea"],"affiliations":[{"raw_affiliation_string":"Department of Software, Gachon University, Seongnam, South Korea","institution_ids":["https://openalex.org/I12832649"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5018395387","display_name":"Hyoseok Hwang","orcid":"https://orcid.org/0000-0003-3241-8455"},"institutions":[{"id":"https://openalex.org/I12832649","display_name":"Gachon University","ror":"https://ror.org/03ryywt80","country_code":"KR","type":"education","lineage":["https://openalex.org/I12832649"]}],"countries":["KR"],"is_corresponding":false,"raw_author_name":"Hyoseok Hwang","raw_affiliation_strings":["Department of Software, Gachon University, Seongnam, South Korea"],"affiliations":[{"raw_affiliation_string":"Department of Software, Gachon University, Seongnam, South Korea","institution_ids":["https://openalex.org/I12832649"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":{"value":1850,"currency":"USD","value_usd":1850,"provenance":"doaj"},"apc_paid":{"value":1850,"currency":"USD","value_usd":1850,"provenance":"doaj"},"fwci":1.055,"has_fulltext":false,"cited_by_count":12,"citation_normalized_percentile":{"value":0.770853,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":88,"max":89},"biblio":{"volume":"8","issue":null,"first_page":"81022","last_page":"81033"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10601","display_name":"Handwritten Text Recognition Techniques","score":0.9994,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10601","display_name":"Handwritten Text Recognition Techniques","score":0.9994,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12016","display_name":"Web Data Mining and Analysis","score":0.9966,"subfield":{"id":"https://openalex.org/subfields/1710","display_name":"Information Systems"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11550","display_name":"Text and Document Classification Technologies","score":0.9934,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/table","display_name":"Table (database)","score":0.6466587},{"id":"https://openalex.org/keywords/tree","display_name":"Tree (set theory)","score":0.46302003},{"id":"https://openalex.org/keywords/feature","display_name":"Feature (linguistics)","score":0.42657003}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.8575189},{"id":"https://openalex.org/C45235069","wikidata":"https://www.wikidata.org/wiki/Q278425","display_name":"Table (database)","level":2,"score":0.6466587},{"id":"https://openalex.org/C187691185","wikidata":"https://www.wikidata.org/wiki/Q2020720","display_name":"Grid","level":2,"score":0.57126963},{"id":"https://openalex.org/C26517878","wikidata":"https://www.wikidata.org/wiki/Q228039","display_name":"Key (lock)","level":2,"score":0.5408789},{"id":"https://openalex.org/C23123220","wikidata":"https://www.wikidata.org/wiki/Q816826","display_name":"Information retrieval","level":1,"score":0.5331409},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.5300961},{"id":"https://openalex.org/C113174947","wikidata":"https://www.wikidata.org/wiki/Q2859736","display_name":"Tree (set theory)","level":2,"score":0.46302003},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.45976773},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.45353293},{"id":"https://openalex.org/C52622490","wikidata":"https://www.wikidata.org/wiki/Q1026626","display_name":"Feature extraction","level":2,"score":0.44958875},{"id":"https://openalex.org/C81669768","wikidata":"https://www.wikidata.org/wiki/Q2359161","display_name":"Precision and recall","level":2,"score":0.44596213},{"id":"https://openalex.org/C2776401178","wikidata":"https://www.wikidata.org/wiki/Q12050496","display_name":"Feature (linguistics)","level":2,"score":0.42657003},{"id":"https://openalex.org/C134306372","wikidata":"https://www.wikidata.org/wiki/Q7754","display_name":"Mathematical analysis","level":1,"score":0.0},{"id":"https://openalex.org/C41895202","wikidata":"https://www.wikidata.org/wiki/Q8162","display_name":"Linguistics","level":1,"score":0.0},{"id":"https://openalex.org/C138885662","wikidata":"https://www.wikidata.org/wiki/Q5891","display_name":"Philosophy","level":0,"score":0.0},{"id":"https://openalex.org/C2524010","wikidata":"https://www.wikidata.org/wiki/Q8087","display_name":"Geometry","level":1,"score":0.0},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.0},{"id":"https://openalex.org/C38652104","wikidata":"https://www.wikidata.org/wiki/Q3510521","display_name":"Computer security","level":1,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":true,"landing_page_url":"https://doi.org/10.1109/access.2020.2990901","pdf_url":"https://ieeexplore.ieee.org/ielx7/6287639/8948470/09079835.pdf","source":{"id":"https://openalex.org/S2485537415","display_name":"IEEE Access","issn_l":"2169-3536","issn":["2169-3536"],"is_oa":true,"is_in_doaj":true,"is_core":true,"host_organization":"https://openalex.org/P4310319808","host_organization_name":"Institute of Electrical and Electronics Engineers","host_organization_lineage":["https://openalex.org/P4310319808"],"host_organization_lineage_names":["Institute of Electrical and Electronics Engineers"],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},{"is_oa":false,"landing_page_url":"https://doaj.org/article/181c4c4bad434c2688c0022b6c6f04b2","pdf_url":null,"source":{"id":"https://openalex.org/S4306401280","display_name":"DOAJ (DOAJ: Directory of Open Access Journals)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"repository"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1109/access.2020.2990901","pdf_url":"https://ieeexplore.ieee.org/ielx7/6287639/8948470/09079835.pdf","source":{"id":"https://openalex.org/S2485537415","display_name":"IEEE Access","issn_l":"2169-3536","issn":["2169-3536"],"is_oa":true,"is_in_doaj":true,"is_core":true,"host_organization":"https://openalex.org/P4310319808","host_organization_name":"Institute of Electrical and Electronics Engineers","host_organization_lineage":["https://openalex.org/P4310319808"],"host_organization_lineage_names":["Institute of Electrical and Electronics Engineers"],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},"sustainable_development_goals":[],"grants":[{"funder":"https://openalex.org/F4320321366","funder_display_name":"Gachon University","award_id":"GCU-2019-0779"},{"funder":"https://openalex.org/F4320322120","funder_display_name":"National Research Foundation of Korea","award_id":"2019R1F1A1057984"}],"datasets":[],"versions":[],"referenced_works_count":36,"referenced_works":["https://openalex.org/W1536680647","https://openalex.org/W1861492603","https://openalex.org/W1967774582","https://openalex.org/W1988217119","https://openalex.org/W1990899722","https://openalex.org/W2001642682","https://openalex.org/W2022351003","https://openalex.org/W2046941907","https://openalex.org/W2056797079","https://openalex.org/W2078206655","https://openalex.org/W2096031153","https://openalex.org/W2098218583","https://openalex.org/W2100949927","https://openalex.org/W2108598243","https://openalex.org/W2111768419","https://openalex.org/W2125570474","https://openalex.org/W2136379584","https://openalex.org/W2138556038","https://openalex.org/W2139053978","https://openalex.org/W2142907989","https://openalex.org/W2163041183","https://openalex.org/W2166323498","https://openalex.org/W2183341477","https://openalex.org/W2207576364","https://openalex.org/W2290320465","https://openalex.org/W2444353601","https://openalex.org/W2549139847","https://openalex.org/W2777421064","https://openalex.org/W2786162033","https://openalex.org/W2787523828","https://openalex.org/W2787835872","https://openalex.org/W3032536818","https://openalex.org/W3104049173","https://openalex.org/W3157685993","https://openalex.org/W4235592330","https://openalex.org/W4246722913"],"related_works":["https://openalex.org/W4288047943","https://openalex.org/W4242025311","https://openalex.org/W4232484699","https://openalex.org/W2990655940","https://openalex.org/W2966805374","https://openalex.org/W2948670949","https://openalex.org/W2478535484","https://openalex.org/W2473636215","https://openalex.org/W1797990060","https://openalex.org/W1590279850"],"abstract_inverted_index":{"Table":[0],"detection":[1,116],"is":[2],"an":[3,79],"essential":[4],"part":[5],"of":[6,42,50,68,99,122,129,140,161,172,220,228,254],"a":[7,114,143,148,194,208,215,234],"document":[8],"analysis":[9],"because":[10],"tables":[11,27,56,86],"are":[12,58,226],"among":[13],"the":[14,40,66,126,130,134,154,159,162,165,170,182,190,199,211,241,247,252,255,258],"most":[15,49],"efficient":[16,80],"methods":[17],"for":[18,84,110,197],"systematically":[19],"summarizing":[20],"information.":[21],"Therefore,":[22],"numerous":[23],"studies":[24,52],"on":[25],"detecting":[26,55,85],"not":[28,177],"only":[29],"from":[30,34,54,189],"documents":[31,95],"but":[32],"also":[33,239],"websites":[35,43],"have":[36],"been":[37,45],"conducted.":[38],"Although,":[39],"number":[41],"has":[44],"growing":[46],"explosively":[47],"recently,":[48],"these":[51],"suffer":[53],"which":[57,90,106,225],"image":[59,88],"types":[60],"rather":[61],"than":[62],"tagging":[63],"due":[64],"to":[65,93,207,260],"variability":[67],"size,":[69],"contents,":[70],"color,":[71],"and":[72,96,147,175,192,218,223,231],"shapes.":[73],"In":[74,153,181,245],"this":[75],"paper,":[76],"we":[77,112,157,185,203],"propose":[78],"yet":[81],"robust":[82],"method":[83,117,138,206,250],"in":[87,133,164,179,257],"formats,":[89],"can":[91],"apply":[92,113,193],"both":[94],"websites.":[97],"Instead":[98],"employing":[100],"recently":[101],"developed":[102],"deep":[103],"learning":[104],"methods,":[105],"require":[107],"extensive":[108],"training":[109],"diversity,":[111],"rule-based":[115,249],"by":[118],"using":[119],"key":[120],"features":[121,160,171,191],"many":[123],"tables,":[124],"namely,":[125],"grid":[127,149,200],"format":[128],"text":[131],"provided":[132],"tables.":[135,166,180],"The":[136],"proposed":[137,248],"consists":[139],"two":[141],"stages:":[142],"feature":[144],"extraction":[145],"stage":[146],"pattern":[150],"recognition":[151],"stage.":[152],"first":[155],"stage,":[156,184],"extract":[158],"contents":[163,256],"We":[167],"then":[168],"remove":[169],"non-text":[173],"objects":[174],"texts":[176],"included":[178],"second":[183],"build":[186],"tree":[187],"structures":[188],"novel":[195],"algorithm":[196],"determining":[198],"pattern.":[201],"When":[202],"applied":[204],"our":[205],"website":[209],"dataset,":[210],"experimental":[212],"results":[213],"showed":[214],"precision,":[216],"recall,":[217],"F1-measure":[219],"84.5%,":[221],"72%,":[222],"0.778,":[224],"improvements":[227],"3.6%,":[229],"24.16%,":[230],"0.276":[232],"over":[233],"previous":[235],"method,":[236],"respectively,":[237],"while":[238],"achieving":[240],"fastest":[242],"processing":[243],"time.":[244],"addition,":[246],"allows":[251],"structure":[253],"table":[259],"be":[261],"easily":[262],"restored.":[263]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W3021344331","counts_by_year":[{"year":2024,"cited_by_count":1},{"year":2022,"cited_by_count":4},{"year":2021,"cited_by_count":6},{"year":2020,"cited_by_count":1}],"updated_date":"2025-01-05T11:31:55.291798","created_date":"2020-05-13"}