{"id":"https://openalex.org/W3007816856","doi":"https://doi.org/10.1109/access.2020.2974886","title":"Hyperspectral Anomaly Detection Method Based on Adaptive Background Extraction","display_name":"Hyperspectral Anomaly Detection Method Based on Adaptive Background Extraction","publication_year":2020,"publication_date":"2020-01-01","ids":{"openalex":"https://openalex.org/W3007816856","doi":"https://doi.org/10.1109/access.2020.2974886","mag":"3007816856"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1109/access.2020.2974886","pdf_url":"https://ieeexplore.ieee.org/ielx7/6287639/8948470/09001137.pdf","source":{"id":"https://openalex.org/S2485537415","display_name":"IEEE Access","issn_l":"2169-3536","issn":["2169-3536"],"is_oa":true,"is_in_doaj":true,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310319808","host_organization_name":"Institute of Electrical and Electronics Engineers","host_organization_lineage":["https://openalex.org/P4310319808"],"host_organization_lineage_names":["Institute of Electrical and Electronics Engineers"],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},"type":"article","type_crossref":"journal-article","indexed_in":["crossref"],"open_access":{"is_oa":true,"oa_status":"gold","oa_url":"https://ieeexplore.ieee.org/ielx7/6287639/8948470/09001137.pdf","any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5101816654","display_name":"Min Li","orcid":"https://orcid.org/0000-0002-6724-825X"},"institutions":[{"id":"https://openalex.org/I163340411","display_name":"Hohai University","ror":"https://ror.org/01wd4xt90","country_code":"CN","type":"funder","lineage":["https://openalex.org/I163340411"]},{"id":"https://openalex.org/I78577930","display_name":"Columbia University","ror":"https://ror.org/00hj8s172","country_code":"US","type":"funder","lineage":["https://openalex.org/I78577930"]}],"countries":["CN","US"],"is_corresponding":false,"raw_author_name":"Min Li","raw_affiliation_strings":["College of Internet of Things Engineering, Hohai University, Changzhou, China","Department of Psychiatry, Division of Translational Imaging, Columbia University, New York, USA"],"affiliations":[{"raw_affiliation_string":"College of Internet of Things Engineering, Hohai University, Changzhou, China","institution_ids":["https://openalex.org/I163340411"]},{"raw_affiliation_string":"Department of Psychiatry, Division of Translational Imaging, Columbia University, New York, USA","institution_ids":["https://openalex.org/I78577930"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5045561301","display_name":"Puhuang Li","orcid":null},"institutions":[{"id":"https://openalex.org/I163340411","display_name":"Hohai University","ror":"https://ror.org/01wd4xt90","country_code":"CN","type":"funder","lineage":["https://openalex.org/I163340411"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Puhuang Li","raw_affiliation_strings":["College of Internet of Things Engineering, Hohai University, Changzhou, China"],"affiliations":[{"raw_affiliation_string":"College of Internet of Things Engineering, Hohai University, Changzhou, China","institution_ids":["https://openalex.org/I163340411"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5101830019","display_name":"Haiyan Xu","orcid":"https://orcid.org/0000-0003-1317-3528"},"institutions":[{"id":"https://openalex.org/I163340411","display_name":"Hohai University","ror":"https://ror.org/01wd4xt90","country_code":"CN","type":"funder","lineage":["https://openalex.org/I163340411"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Haiyan Xu","raw_affiliation_strings":["College of Internet of Things Engineering, Hohai University, Changzhou, China"],"affiliations":[{"raw_affiliation_string":"College of Internet of Things Engineering, Hohai University, Changzhou, China","institution_ids":["https://openalex.org/I163340411"]}]}],"institution_assertions":[],"countries_distinct_count":2,"institutions_distinct_count":2,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":{"value":1850,"currency":"USD","value_usd":1850},"apc_paid":{"value":1850,"currency":"USD","value_usd":1850},"fwci":0.257,"has_fulltext":true,"fulltext_origin":"pdf","cited_by_count":3,"citation_normalized_percentile":{"value":0.71074,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":73,"max":76},"biblio":{"volume":"8","issue":null,"first_page":"35446","last_page":"35454"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10689","display_name":"Remote-Sensing Image Classification","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/2214","display_name":"Media Technology"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10689","display_name":"Remote-Sensing Image Classification","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/2214","display_name":"Media Technology"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T13890","display_name":"Remote Sensing and Land Use","score":0.9921,"subfield":{"id":"https://openalex.org/subfields/1902","display_name":"Atmospheric Science"},"field":{"id":"https://openalex.org/fields/19","display_name":"Earth and Planetary Sciences"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11667","display_name":"Advanced Chemical Sensor Technologies","score":0.9637,"subfield":{"id":"https://openalex.org/subfields/2204","display_name":"Biomedical Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/salience","display_name":"Salience (neuroscience)","score":0.42350903}],"concepts":[{"id":"https://openalex.org/C73555534","wikidata":"https://www.wikidata.org/wiki/Q622825","display_name":"Cluster analysis","level":2,"score":0.7786168},{"id":"https://openalex.org/C160633673","wikidata":"https://www.wikidata.org/wiki/Q355198","display_name":"Pixel","level":2,"score":0.7612701},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.70244676},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.63859516},{"id":"https://openalex.org/C159078339","wikidata":"https://www.wikidata.org/wiki/Q959005","display_name":"Hyperspectral imaging","level":2,"score":0.6300078},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.5950633},{"id":"https://openalex.org/C739882","wikidata":"https://www.wikidata.org/wiki/Q3560506","display_name":"Anomaly detection","level":2,"score":0.57684857},{"id":"https://openalex.org/C2908647359","wikidata":"https://www.wikidata.org/wiki/Q2625603","display_name":"Population","level":2,"score":0.444063},{"id":"https://openalex.org/C108154423","wikidata":"https://www.wikidata.org/wiki/Q1469792","display_name":"Salience (neuroscience)","level":2,"score":0.42350903},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.34507275},{"id":"https://openalex.org/C144024400","wikidata":"https://www.wikidata.org/wiki/Q21201","display_name":"Sociology","level":0,"score":0.0},{"id":"https://openalex.org/C149923435","wikidata":"https://www.wikidata.org/wiki/Q37732","display_name":"Demography","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":true,"landing_page_url":"https://doi.org/10.1109/access.2020.2974886","pdf_url":"https://ieeexplore.ieee.org/ielx7/6287639/8948470/09001137.pdf","source":{"id":"https://openalex.org/S2485537415","display_name":"IEEE Access","issn_l":"2169-3536","issn":["2169-3536"],"is_oa":true,"is_in_doaj":true,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310319808","host_organization_name":"Institute of Electrical and Electronics Engineers","host_organization_lineage":["https://openalex.org/P4310319808"],"host_organization_lineage_names":["Institute of Electrical and Electronics Engineers"],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1109/access.2020.2974886","pdf_url":"https://ieeexplore.ieee.org/ielx7/6287639/8948470/09001137.pdf","source":{"id":"https://openalex.org/S2485537415","display_name":"IEEE Access","issn_l":"2169-3536","issn":["2169-3536"],"is_oa":true,"is_in_doaj":true,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310319808","host_organization_name":"Institute of Electrical and Electronics Engineers","host_organization_lineage":["https://openalex.org/P4310319808"],"host_organization_lineage_names":["Institute of Electrical and Electronics Engineers"],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},"sustainable_development_goals":[{"id":"https://metadata.un.org/sdg/10","display_name":"Reduced inequalities","score":0.73}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":33,"referenced_works":["https://openalex.org/W1970099214","https://openalex.org/W1971358070","https://openalex.org/W1990953362","https://openalex.org/W2019914381","https://openalex.org/W2045431957","https://openalex.org/W2057498097","https://openalex.org/W2080271213","https://openalex.org/W2121824258","https://openalex.org/W2122646361","https://openalex.org/W2124267685","https://openalex.org/W2124463804","https://openalex.org/W2131697388","https://openalex.org/W2140340527","https://openalex.org/W2142552707","https://openalex.org/W2158340226","https://openalex.org/W2163886442","https://openalex.org/W2165835468","https://openalex.org/W2228126342","https://openalex.org/W2288752886","https://openalex.org/W2288987301","https://openalex.org/W2303627748","https://openalex.org/W2497075055","https://openalex.org/W2562820467","https://openalex.org/W2789516031","https://openalex.org/W2795739134","https://openalex.org/W2796629918","https://openalex.org/W2800662010","https://openalex.org/W2893965284","https://openalex.org/W2898121906","https://openalex.org/W2900199428","https://openalex.org/W2927240970","https://openalex.org/W2978534540","https://openalex.org/W2981073809"],"related_works":["https://openalex.org/W3209970181","https://openalex.org/W3034864990","https://openalex.org/W3034375524","https://openalex.org/W2343470940","https://openalex.org/W2072166414","https://openalex.org/W2070598848","https://openalex.org/W2060875994","https://openalex.org/W2044184146","https://openalex.org/W2027399350","https://openalex.org/W2019190440"],"abstract_inverted_index":{"Anomaly":[0],"detection":[1,66],"based":[2,68],"on":[3,69,213],"clustering":[4,21,79,148],"is":[5,73,184,200],"a":[6,11,16,182,197],"classic":[7],"method":[8,67,80],"that":[9],"supplies":[10],"simplified":[12],"manner":[13],"to":[14,24,34,54,57,81,87,104,174,186,202,221],"describe":[15],"cluttered":[17],"background.":[18],"However,":[19],"traditional":[20],"methods":[22],"need":[23],"know":[25],"the":[26,37,83,89,92,97,100,114,121,124,127,136,139,152,158,188,192,204,223,226],"number":[27,153],"of":[28,91,99,141,154,161,191,216,225],"clusters":[29,51,107,116,143],"in":[30],"advance":[31],"and":[32,117,169],"attempt":[33],"classify":[35],"all":[36],"background":[38,48,71,106,171,179],"pixels":[39,129,156,172],"at":[40],"one":[41],"time.":[42],"In":[43,61,123,195],"addition,":[44,196],"compared":[45],"with":[46],"large":[47],"clusters,":[49,138],"small":[50,59],"are":[52,130,219],"hard":[53],"discriminate":[55],"due":[56],"their":[58],"populations.":[60],"this":[62],"paper,":[63],"an":[64,77],"anomaly":[65,162,189],"adaptive":[70],"extraction":[72],"proposed.":[74],"We":[75],"apply":[76],"unsupervised":[78],"determine":[82],"cluster":[84,113],"centers":[85,140],"according":[86],"only":[88,112,167],"similarity":[90],"spectral":[93],"signature.":[94],"To":[95],"reduce":[96],"influence":[98],"population,":[101],"we":[102,111],"propose":[103],"extract":[105,118],"iteratively.":[108],"Every":[109],"iteration,":[110,126],"larger":[115,137],"them":[119],"from":[120,135,208],"data-set.":[122],"next":[125],"remaining":[128,155],"clustered":[131],"again.":[132],"Without":[133],"interference":[134],"smaller":[142],"will":[144],"appear":[145],"obviously.":[146],"The":[147],"process":[149],"stop":[150],"when":[151],"nears":[157],"appearance":[159],"probability":[160],"(generally":[163],"approximately":[164],"10%~20%).":[165],"Then,":[166],"anomalies":[168],"few":[170],"remain":[173],"test.":[175],"Finally,":[176],"every":[177],"extracted":[178],"cluster,":[180],"as":[181],"viewer,":[183],"applied":[185],"measure":[187],"salience":[190,206],"test":[193],"pixels.":[194],"weighted":[198],"summation":[199],"proposed":[201,227],"fuse":[203],"different":[205,209],"values":[207],"viewers.":[210],"Simulation":[211],"experiments":[212],"two":[214],"sets":[215],"real":[217],"data":[218],"presented":[220],"demonstrate":[222],"superiority":[224],"method.":[228]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W3007816856","counts_by_year":[{"year":2024,"cited_by_count":1},{"year":2022,"cited_by_count":1},{"year":2020,"cited_by_count":1}],"updated_date":"2025-04-24T02:02:38.242372","created_date":"2020-03-06"}