{"id":"https://openalex.org/W3001364035","doi":"https://doi.org/10.1109/access.2020.2967843","title":"A Fast Alternating Direction Method of Multipliers Algorithm for Big Data Applications","display_name":"A Fast Alternating Direction Method of Multipliers Algorithm for Big Data Applications","publication_year":2020,"publication_date":"2020-01-01","ids":{"openalex":"https://openalex.org/W3001364035","doi":"https://doi.org/10.1109/access.2020.2967843","mag":"3001364035"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1109/access.2020.2967843","pdf_url":"https://ieeexplore.ieee.org/ielx7/6287639/8948470/08963624.pdf","source":{"id":"https://openalex.org/S2485537415","display_name":"IEEE Access","issn_l":"2169-3536","issn":["2169-3536"],"is_oa":true,"is_in_doaj":true,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310319808","host_organization_name":"Institute of Electrical and Electronics Engineers","host_organization_lineage":["https://openalex.org/P4310319808"],"host_organization_lineage_names":["Institute of Electrical and Electronics Engineers"],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},"type":"article","type_crossref":"journal-article","indexed_in":["crossref","doaj"],"open_access":{"is_oa":true,"oa_status":"gold","oa_url":"https://ieeexplore.ieee.org/ielx7/6287639/8948470/08963624.pdf","any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5100371083","display_name":"Huihui Wang","orcid":"https://orcid.org/0000-0002-7954-3125"},"institutions":[{"id":"https://openalex.org/I36399199","display_name":"Nanjing University of Science and Technology","ror":"https://ror.org/00xp9wg62","country_code":"CN","type":"funder","lineage":["https://openalex.org/I36399199"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Huihui Wang","raw_affiliation_strings":["Key Lab of Intelligent Perception and Systems for High-Dimensional Information of Ministry of Education, School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing, China"],"affiliations":[{"raw_affiliation_string":"Key Lab of Intelligent Perception and Systems for High-Dimensional Information of Ministry of Education, School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing, China","institution_ids":["https://openalex.org/I36399199"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5101574243","display_name":"Xingguo Chen","orcid":null},"institutions":[{"id":"https://openalex.org/I41198531","display_name":"Nanjing University of Posts and Telecommunications","ror":"https://ror.org/043bpky34","country_code":"CN","type":"funder","lineage":["https://openalex.org/I41198531"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Xingguo Chen","raw_affiliation_strings":["School of Computer Science, Nanjing University of Posts and Telecommunications, Nanjing, China"],"affiliations":[{"raw_affiliation_string":"School of Computer Science, Nanjing University of Posts and Telecommunications, Nanjing, China","institution_ids":["https://openalex.org/I41198531"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":2,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":{"value":1850,"currency":"USD","value_usd":1850},"apc_paid":{"value":1850,"currency":"USD","value_usd":1850},"fwci":0.466,"has_fulltext":true,"fulltext_origin":"pdf","cited_by_count":4,"citation_normalized_percentile":{"value":0.572617,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":76,"max":78},"biblio":{"volume":"8","issue":null,"first_page":"20607","last_page":"20615"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10500","display_name":"Sparse and Compressive Sensing Techniques","score":0.9963,"subfield":{"id":"https://openalex.org/subfields/2206","display_name":"Computational Mechanics"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10500","display_name":"Sparse and Compressive Sensing Techniques","score":0.9963,"subfield":{"id":"https://openalex.org/subfields/2206","display_name":"Computational Mechanics"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12676","display_name":"Machine Learning and ELM","score":0.9953,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11612","display_name":"Stochastic Gradient Optimization Techniques","score":0.9887,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/benchmark","display_name":"Benchmark (surveying)","score":0.6557124}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.8512608},{"id":"https://openalex.org/C2780513914","wikidata":"https://www.wikidata.org/wiki/Q18210350","display_name":"Bottleneck","level":2,"score":0.74604034},{"id":"https://openalex.org/C75684735","wikidata":"https://www.wikidata.org/wiki/Q858810","display_name":"Big data","level":2,"score":0.67997676},{"id":"https://openalex.org/C185798385","wikidata":"https://www.wikidata.org/wiki/Q1161707","display_name":"Benchmark (surveying)","level":2,"score":0.6557124},{"id":"https://openalex.org/C79974875","wikidata":"https://www.wikidata.org/wiki/Q483639","display_name":"Cloud computing","level":2,"score":0.60518694},{"id":"https://openalex.org/C45374587","wikidata":"https://www.wikidata.org/wiki/Q12525525","display_name":"Computation","level":2,"score":0.58469385},{"id":"https://openalex.org/C2777303404","wikidata":"https://www.wikidata.org/wiki/Q759757","display_name":"Convergence (economics)","level":2,"score":0.50397795},{"id":"https://openalex.org/C130120984","wikidata":"https://www.wikidata.org/wiki/Q2835898","display_name":"Distributed algorithm","level":2,"score":0.47748396},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.44419485},{"id":"https://openalex.org/C120314980","wikidata":"https://www.wikidata.org/wiki/Q180634","display_name":"Distributed computing","level":1,"score":0.33910313},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.17495334},{"id":"https://openalex.org/C13280743","wikidata":"https://www.wikidata.org/wiki/Q131089","display_name":"Geodesy","level":1,"score":0.0},{"id":"https://openalex.org/C50522688","wikidata":"https://www.wikidata.org/wiki/Q189833","display_name":"Economic growth","level":1,"score":0.0},{"id":"https://openalex.org/C162324750","wikidata":"https://www.wikidata.org/wiki/Q8134","display_name":"Economics","level":0,"score":0.0},{"id":"https://openalex.org/C149635348","wikidata":"https://www.wikidata.org/wiki/Q193040","display_name":"Embedded system","level":1,"score":0.0},{"id":"https://openalex.org/C205649164","wikidata":"https://www.wikidata.org/wiki/Q1071","display_name":"Geography","level":0,"score":0.0},{"id":"https://openalex.org/C111919701","wikidata":"https://www.wikidata.org/wiki/Q9135","display_name":"Operating system","level":1,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":true,"landing_page_url":"https://doi.org/10.1109/access.2020.2967843","pdf_url":"https://ieeexplore.ieee.org/ielx7/6287639/8948470/08963624.pdf","source":{"id":"https://openalex.org/S2485537415","display_name":"IEEE Access","issn_l":"2169-3536","issn":["2169-3536"],"is_oa":true,"is_in_doaj":true,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310319808","host_organization_name":"Institute of Electrical and Electronics Engineers","host_organization_lineage":["https://openalex.org/P4310319808"],"host_organization_lineage_names":["Institute of Electrical and Electronics Engineers"],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},{"is_oa":false,"landing_page_url":"https://doaj.org/article/b37d338ac99740f088e63645aa242b57","pdf_url":null,"source":{"id":"https://openalex.org/S4306401280","display_name":"DOAJ (DOAJ: Directory of Open Access Journals)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"repository"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1109/access.2020.2967843","pdf_url":"https://ieeexplore.ieee.org/ielx7/6287639/8948470/08963624.pdf","source":{"id":"https://openalex.org/S2485537415","display_name":"IEEE Access","issn_l":"2169-3536","issn":["2169-3536"],"is_oa":true,"is_in_doaj":true,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310319808","host_organization_name":"Institute of Electrical and Electronics Engineers","host_organization_lineage":["https://openalex.org/P4310319808"],"host_organization_lineage_names":["Institute of Electrical and Electronics Engineers"],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},"sustainable_development_goals":[{"display_name":"Industry, innovation and infrastructure","id":"https://metadata.un.org/sdg/9","score":0.64}],"grants":[{"funder":"https://openalex.org/F4320321001","funder_display_name":"National Natural Science Foundation of China","award_id":"61806096"}],"datasets":[],"versions":[],"referenced_works_count":55,"referenced_works":["https://openalex.org/W1123251285","https://openalex.org/W130696423","https://openalex.org/W1562101002","https://openalex.org/W1842705303","https://openalex.org/W1982545958","https://openalex.org/W1986080131","https://openalex.org/W1992841740","https://openalex.org/W1995604628","https://openalex.org/W2004261242","https://openalex.org/W2026198955","https://openalex.org/W2028870622","https://openalex.org/W2037603831","https://openalex.org/W2061783148","https://openalex.org/W2076261573","https://openalex.org/W2106955134","https://openalex.org/W2123154536","https://openalex.org/W2123705108","https://openalex.org/W2127941149","https://openalex.org/W2130062883","https://openalex.org/W2132291180","https://openalex.org/W2143021454","https://openalex.org/W2162761269","https://openalex.org/W2164278908","https://openalex.org/W2165966284","https://openalex.org/W2166706236","https://openalex.org/W2183572835","https://openalex.org/W2287826714","https://openalex.org/W2293086481","https://openalex.org/W2395947128","https://openalex.org/W2403326704","https://openalex.org/W2418562807","https://openalex.org/W2770198223","https://openalex.org/W2799796316","https://openalex.org/W2884132298","https://openalex.org/W2894022047","https://openalex.org/W2910142630","https://openalex.org/W2911353037","https://openalex.org/W2911692934","https://openalex.org/W2916106301","https://openalex.org/W2941875011","https://openalex.org/W2946627595","https://openalex.org/W2954613285","https://openalex.org/W2962696932","https://openalex.org/W2963512942","https://openalex.org/W2963861706","https://openalex.org/W2963910448","https://openalex.org/W2968554659","https://openalex.org/W2974991939","https://openalex.org/W2979740536","https://openalex.org/W2981067452","https://openalex.org/W2997987659","https://openalex.org/W3099831354","https://openalex.org/W38875623","https://openalex.org/W4292363360","https://openalex.org/W845484681"],"related_works":["https://openalex.org/W4382618745","https://openalex.org/W2885125400","https://openalex.org/W2748922771","https://openalex.org/W2743976221","https://openalex.org/W2595172197","https://openalex.org/W2127970246","https://openalex.org/W2084856301","https://openalex.org/W1989889224","https://openalex.org/W1987128138","https://openalex.org/W1973775000"],"abstract_inverted_index":{"In":[0,95,147],"recent":[1],"years,":[2],"with":[3,111],"the":[4,8,32,50,85,89,126,133,152,156,165,173,185],"explosive":[5],"growth":[6],"of":[7,13,91,109,128,135,138,158,160,175,194],"data,":[9],"a":[10,100,204],"wide":[11],"range":[12],"data":[14,39,51,64,77,215],"in":[15,57,61,79,88,141,213],"Cyber-Physical-Social":[16],"Systems":[17],"(CPSS)":[18],"are":[19,53],"generated":[20],"and":[21,47,55,69,155,169,184,201,207],"collected":[22],"as":[23,31],"big":[24,38,63,76,214],"data.":[25],"Cloud":[26],"computing":[27,68],"have":[28],"been":[29,72],"widely-used":[30],"supporting":[33],"computation":[34,59],"infrastructure,":[35],"which":[36],"makes":[37],"analysis":[40],"gaining":[41],"much":[42],"attention":[43],"from":[44],"IT":[45],"industry":[46],"academia.":[48],"Moreover,":[49],"often":[52],"distributed":[54,67,92,103],"stored":[56],"different":[58],"resources":[60],"many":[62],"applications.":[65,216],"Therefore,":[66],"optimization":[70,93],"has":[71],"developed":[73],"for":[74,210],"solving":[75],"problems":[78],"cloud":[80],"computing.":[81],"time":[82],"efficiency":[83],"is":[84,178],"significant":[86],"bottleneck":[87],"performance":[90,174],"algorithms.":[94],"this":[96],"paper,":[97],"we":[98],"propose":[99],"novel":[101],"fast":[102],"algorithm":[104,209],"via":[105],"Alternating":[106],"Direction":[107],"Method":[108],"Multipliers":[110],"Adaptive":[112],"Local":[113],"Update":[114],"(ADMM-ALU),":[115],"that":[116,189],"uses":[117],"an":[118],"efficient":[119,208],"adaptive":[120],"local":[121,139,170],"update":[122,140],"strategy":[123],"to":[124,162,191],"accelerate":[125],"speed":[127],"convergence":[129],"by":[130],"automatically":[131],"determining":[132],"number":[134],"inner":[136],"iterations":[137],"each":[142],"outer":[143],"iteration":[144],"(communication":[145],"round).":[146],"particular,":[148],"our":[149,176,197],"method":[150,177,198],"applies":[151],"optimality":[153],"conditions":[154],"magnitudes":[157],"residuals":[159],"ADMM":[161,195],"freely":[163],"steer":[164],"trade-off":[166],"between":[167],"communication":[168],"computation.":[171],"Empirically,":[172],"tested":[179],"on":[180],"several":[181],"benchmark":[182],"datasets,":[183],"experimental":[186],"results":[187],"show":[188],"compared":[190],"various":[192],"versions":[193],"algorithms,":[196],"converges":[199],"faster,":[200],"could":[202],"be":[203],"highly":[205],"effective":[206],"practical":[211],"use":[212]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W3001364035","counts_by_year":[{"year":2024,"cited_by_count":1},{"year":2023,"cited_by_count":1},{"year":2021,"cited_by_count":2}],"updated_date":"2025-04-25T12:21:12.800115","created_date":"2020-01-30"}