{"id":"https://openalex.org/W2976510536","doi":"https://doi.org/10.1109/access.2019.2944136","title":"Stance Detection of Microblog Text Based on Two-Channel CNN-GRU Fusion Network","display_name":"Stance Detection of Microblog Text Based on Two-Channel CNN-GRU Fusion Network","publication_year":2019,"publication_date":"2019-01-01","ids":{"openalex":"https://openalex.org/W2976510536","doi":"https://doi.org/10.1109/access.2019.2944136","mag":"2976510536"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1109/access.2019.2944136","pdf_url":"https://ieeexplore.ieee.org/ielx7/6287639/8600701/08851136.pdf","source":{"id":"https://openalex.org/S2485537415","display_name":"IEEE Access","issn_l":"2169-3536","issn":["2169-3536"],"is_oa":true,"is_in_doaj":true,"is_core":true,"host_organization":"https://openalex.org/P4310319808","host_organization_name":"Institute of Electrical and Electronics Engineers","host_organization_lineage":["https://openalex.org/P4310319808"],"host_organization_lineage_names":["Institute of Electrical and Electronics Engineers"],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},"type":"article","type_crossref":"journal-article","indexed_in":["crossref","doaj"],"open_access":{"is_oa":true,"oa_status":"gold","oa_url":"https://ieeexplore.ieee.org/ielx7/6287639/8600701/08851136.pdf","any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5076707686","display_name":"Wenfa Li","orcid":"https://orcid.org/0000-0003-4338-0595"},"institutions":[{"id":"https://openalex.org/I114234892","display_name":"Beijing Union University","ror":"https://ror.org/01hg31662","country_code":"CN","type":"education","lineage":["https://openalex.org/I114234892"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Wenfa Li","raw_affiliation_strings":["Robotics College, Beijing Union University, Beijing, China"],"affiliations":[{"raw_affiliation_string":"Robotics College, Beijing Union University, Beijing, China","institution_ids":["https://openalex.org/I114234892"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5028221119","display_name":"Yilong Xu","orcid":null},"institutions":[{"id":"https://openalex.org/I114234892","display_name":"Beijing Union University","ror":"https://ror.org/01hg31662","country_code":"CN","type":"education","lineage":["https://openalex.org/I114234892"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Yilong Xu","raw_affiliation_strings":["Smart City College, Beijing Union University, Beijing, China"],"affiliations":[{"raw_affiliation_string":"Smart City College, Beijing Union University, Beijing, China","institution_ids":["https://openalex.org/I114234892"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5108028770","display_name":"Gongming Wang","orcid":"https://orcid.org/0000-0002-0466-0888"},"institutions":[{"id":"https://openalex.org/I4210144143","display_name":"Inspur (China)","ror":"https://ror.org/0474p4r72","country_code":"CN","type":"company","lineage":["https://openalex.org/I4210144143"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Gongming Wang","raw_affiliation_strings":["Inspur Software Group Company Ltd., Jinan, China"],"affiliations":[{"raw_affiliation_string":"Inspur Software Group Company Ltd., Jinan, China","institution_ids":["https://openalex.org/I4210144143"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":2,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":{"value":1850,"currency":"USD","value_usd":1850,"provenance":"doaj"},"apc_paid":{"value":1850,"currency":"USD","value_usd":1850,"provenance":"doaj"},"fwci":1.557,"has_fulltext":true,"fulltext_origin":"pdf","cited_by_count":21,"citation_normalized_percentile":{"value":0.807063,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":91,"max":92},"biblio":{"volume":"7","issue":null,"first_page":"145944","last_page":"145952"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10664","display_name":"Sentiment Analysis and Opinion Mining","score":0.9995,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10664","display_name":"Sentiment Analysis and Opinion Mining","score":0.9995,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11550","display_name":"Text and Document Classification Technologies","score":0.999,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10028","display_name":"Topic Modeling","score":0.9986,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.8101554},{"id":"https://openalex.org/C81363708","wikidata":"https://www.wikidata.org/wiki/Q17084460","display_name":"Convolutional neural network","level":2,"score":0.6532427},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.6452821},{"id":"https://openalex.org/C12267149","wikidata":"https://www.wikidata.org/wiki/Q282453","display_name":"Support vector machine","level":2,"score":0.5607176},{"id":"https://openalex.org/C95623464","wikidata":"https://www.wikidata.org/wiki/Q1096149","display_name":"Classifier (UML)","level":2,"score":0.5321478},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.5052369},{"id":"https://openalex.org/C108583219","wikidata":"https://www.wikidata.org/wiki/Q197536","display_name":"Deep learning","level":2,"score":0.46255815},{"id":"https://openalex.org/C52622490","wikidata":"https://www.wikidata.org/wiki/Q1026626","display_name":"Feature extraction","level":2,"score":0.4468716},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.3265459}],"mesh":[],"locations_count":2,"locations":[{"is_oa":true,"landing_page_url":"https://doi.org/10.1109/access.2019.2944136","pdf_url":"https://ieeexplore.ieee.org/ielx7/6287639/8600701/08851136.pdf","source":{"id":"https://openalex.org/S2485537415","display_name":"IEEE Access","issn_l":"2169-3536","issn":["2169-3536"],"is_oa":true,"is_in_doaj":true,"is_core":true,"host_organization":"https://openalex.org/P4310319808","host_organization_name":"Institute of Electrical and Electronics Engineers","host_organization_lineage":["https://openalex.org/P4310319808"],"host_organization_lineage_names":["Institute of Electrical and Electronics Engineers"],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},{"is_oa":false,"landing_page_url":"https://doaj.org/article/91d792e6ad3740e9863a2b1224638d10","pdf_url":null,"source":{"id":"https://openalex.org/S4306401280","display_name":"DOAJ (DOAJ: Directory of Open Access Journals)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"repository"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1109/access.2019.2944136","pdf_url":"https://ieeexplore.ieee.org/ielx7/6287639/8600701/08851136.pdf","source":{"id":"https://openalex.org/S2485537415","display_name":"IEEE Access","issn_l":"2169-3536","issn":["2169-3536"],"is_oa":true,"is_in_doaj":true,"is_core":true,"host_organization":"https://openalex.org/P4310319808","host_organization_name":"Institute of Electrical and Electronics Engineers","host_organization_lineage":["https://openalex.org/P4310319808"],"host_organization_lineage_names":["Institute of Electrical and Electronics Engineers"],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},"sustainable_development_goals":[{"score":0.42,"id":"https://metadata.un.org/sdg/4","display_name":"Quality education"}],"grants":[{"funder":"https://openalex.org/F4320321001","funder_display_name":"National Natural Science Foundation of China","award_id":"61841601"},{"funder":"https://openalex.org/F4320321572","funder_display_name":"Beijing Municipal Commission of Education","award_id":"KM201711417011"},{"funder":"https://openalex.org/F4320322664","funder_display_name":"Beijing Union University","award_id":"BPHR2018EZ01"}],"datasets":[],"versions":[],"referenced_works_count":33,"referenced_works":["https://openalex.org/W1538131130","https://openalex.org/W1964757081","https://openalex.org/W2064675550","https://openalex.org/W2098420572","https://openalex.org/W2100002341","https://openalex.org/W2145327091","https://openalex.org/W2158899491","https://openalex.org/W2347127863","https://openalex.org/W2460159515","https://openalex.org/W2462305695","https://openalex.org/W2462365838","https://openalex.org/W2462738860","https://openalex.org/W2471505823","https://openalex.org/W2472225127","https://openalex.org/W2559054912","https://openalex.org/W2559140282","https://openalex.org/W2587019100","https://openalex.org/W2752262499","https://openalex.org/W2767329425","https://openalex.org/W2798367316","https://openalex.org/W2805962188","https://openalex.org/W2809415789","https://openalex.org/W2884453613","https://openalex.org/W2887804579","https://openalex.org/W2898785456","https://openalex.org/W2905673766","https://openalex.org/W2952230511","https://openalex.org/W2953135047","https://openalex.org/W2962681771","https://openalex.org/W2962767317","https://openalex.org/W2963811339","https://openalex.org/W2964230653","https://openalex.org/W4320926855"],"related_works":["https://openalex.org/W4375867731","https://openalex.org/W4226493464","https://openalex.org/W3133861977","https://openalex.org/W3103566983","https://openalex.org/W2951211570","https://openalex.org/W2104657898","https://openalex.org/W2090763504","https://openalex.org/W1948992892","https://openalex.org/W1886884218","https://openalex.org/W148178222"],"abstract_inverted_index":{"In":[0,17,98,253],"recent":[1],"years,":[2],"stance":[3,26,164],"detection":[4,27],"has":[5,67],"become":[6],"an":[7],"important":[8],"topic":[9,130],"in":[10,232],"the":[11,39,60,68,93,129,151,163,236,261,269,284,295],"field":[12],"of":[13,70,96,185,245,272,281],"natural":[14],"language":[15],"processing.":[16],"earlier":[18],"work,":[19],"researchers":[20,53],"have":[21,54,83],"used":[22,123,143,225],"feature":[23],"engineering":[24],"for":[25],"but":[28,283],"they":[29],"need":[30],"to":[31,38,44,100,124,144,158,161],"define":[32],"and":[33,47,73,88,132,156,181,190,197,204,210,212,234],"extract":[34,80,125,145],"appropriate":[35,297],"features":[36,81,127,153],"according":[37],"particular":[40],"application.":[41],"This":[42],"leads":[43],"poor":[45],"generalization":[46],"a":[48,74,106,112,136,159,227,246,273,291],"complex":[49],"modeling":[50],"process.":[51],"Other":[52],"applied":[55],"deep":[56],"learning":[57],"methods.":[58],"However,":[59],"popular":[61],"convolutional":[62],"neural":[63],"network":[64,141],"(CNN)":[65],"method":[66,167,187,256],"problem":[69],"information":[71],"loss":[72],"single-size":[75],"CNN":[76,201],"filter":[77],"cannot":[78,90],"accurately":[79],"that":[82,179,268],"different":[84,119],"lengths":[85],"from":[86,172],"text,":[87],"so":[89,290],"deal":[91],"with":[92,115,118,216,229,239,278],"diverse":[94],"nature":[95],"features.":[97],"order":[99],"address":[101],"these":[102],"problems,":[103],"we":[104,266],"propose":[105],"two-channel":[107,292],"CNN-GRU":[108,275,293],"fusion":[109],"network.":[110],"First,":[111],"convolution":[113],"layer":[114],"two":[116],"filters":[117],"window":[120],"sizes":[121],"is":[122,142,168,224,294],"local":[126],"within":[128],"content":[131],"text":[133],"content.":[134],"Then,":[135],"gated":[137],"recurrent":[138],"unit":[139],"(GRU)":[140],"their":[146],"timing":[147],"characteristics.":[148],"After":[149],"that,":[150],"intermediate":[152],"are":[154,188],"spliced":[155],"input":[157],"classifier":[160],"complete":[162],"detection.":[165],"Our":[166],"validated":[169],"using":[170],"data":[171],"NLPCC":[173],"2016.":[174],"The":[175],"experimental":[176],"results":[177],"show":[178],"ACC":[180],"average":[182],"F1":[183],"score":[184],"this":[186],"13.1%":[189],"15.6%":[191],"better":[192,199,206,214,258],"than":[193,200,207,242,260],"SVM":[194],"method,":[195,202,209],"6.2%":[196],"11.6%":[198],"5.6%":[203],"3.3%":[205],"GRU":[208],"1.1%":[211],"2.2%":[213],"compared":[215],"hybrid":[217],"model":[218,249],"proposed":[219,250],"by":[220,251],"Nanyu,":[221],"respectively,":[222],"which":[223],"as":[226],"baseline":[228,244],"no":[230],"increase":[231],"run-time,":[233],"achieves":[235],"same":[237],"accuracy":[238,286],"less":[240],"run-time":[241],"another":[243],"semantic":[247],"attention-based":[248],"Zhou.":[252],"addition,":[254],"our":[255],"allows":[257],"classification":[259,285],"single":[262],"channel":[263],"model.":[264],"Finally,":[265],"find":[267],"operation":[270],"time":[271],"multi-channel":[274],"increases":[276],"gradually":[277],"increasing":[279],"number":[280],"channels,":[282],"does":[287],"not":[288],"improve,":[289],"most":[296],"choice.":[298]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2976510536","counts_by_year":[{"year":2024,"cited_by_count":4},{"year":2023,"cited_by_count":5},{"year":2022,"cited_by_count":8},{"year":2021,"cited_by_count":3}],"updated_date":"2024-12-14T01:41:49.266522","created_date":"2019-10-03"}