{"id":"https://openalex.org/W2969214403","doi":"https://doi.org/10.1109/access.2019.2936030","title":"Bidimensional Multivariate Empirical Mode Decomposition With Applications in Multi-Scale Image Fusion","display_name":"Bidimensional Multivariate Empirical Mode Decomposition With Applications in Multi-Scale Image Fusion","publication_year":2019,"publication_date":"2019-01-01","ids":{"openalex":"https://openalex.org/W2969214403","doi":"https://doi.org/10.1109/access.2019.2936030","mag":"2969214403"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1109/access.2019.2936030","pdf_url":"https://ieeexplore.ieee.org/ielx7/6287639/8600701/08805082.pdf","source":{"id":"https://openalex.org/S2485537415","display_name":"IEEE Access","issn_l":"2169-3536","issn":["2169-3536"],"is_oa":true,"is_in_doaj":true,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310319808","host_organization_name":"Institute of Electrical and Electronics Engineers","host_organization_lineage":["https://openalex.org/P4310319808"],"host_organization_lineage_names":["Institute of Electrical and Electronics Engineers"],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},"type":"article","type_crossref":"journal-article","indexed_in":["crossref"],"open_access":{"is_oa":true,"oa_status":"gold","oa_url":"https://ieeexplore.ieee.org/ielx7/6287639/8600701/08805082.pdf","any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5005242197","display_name":"Yili Xia","orcid":"https://orcid.org/0000-0002-4402-8131"},"institutions":[{"id":"https://openalex.org/I76569877","display_name":"Southeast University","ror":"https://ror.org/04ct4d772","country_code":"CN","type":"funder","lineage":["https://openalex.org/I76569877"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Yili Xia","raw_affiliation_strings":["School of Information Science and Engineering, Southeast University, Nanjing, China"],"affiliations":[{"raw_affiliation_string":"School of Information Science and Engineering, Southeast University, Nanjing, China","institution_ids":["https://openalex.org/I76569877"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100392873","display_name":"Bin Zhang","orcid":"https://orcid.org/0000-0002-8267-6949"},"institutions":[{"id":"https://openalex.org/I76569877","display_name":"Southeast University","ror":"https://ror.org/04ct4d772","country_code":"CN","type":"funder","lineage":["https://openalex.org/I76569877"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Bin Zhang","raw_affiliation_strings":["School of Information Science and Engineering, Southeast University, Nanjing, China"],"affiliations":[{"raw_affiliation_string":"School of Information Science and Engineering, Southeast University, Nanjing, China","institution_ids":["https://openalex.org/I76569877"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5101830725","display_name":"Wenjiang Pei","orcid":"https://orcid.org/0000-0002-0776-4607"},"institutions":[{"id":"https://openalex.org/I76569877","display_name":"Southeast University","ror":"https://ror.org/04ct4d772","country_code":"CN","type":"funder","lineage":["https://openalex.org/I76569877"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Wenjiang Pei","raw_affiliation_strings":["School of Information Science and Engineering, Southeast University, Nanjing, China"],"affiliations":[{"raw_affiliation_string":"School of Information Science and Engineering, Southeast University, Nanjing, China","institution_ids":["https://openalex.org/I76569877"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5103001848","display_name":"Danilo P. Mandic","orcid":"https://orcid.org/0000-0001-8432-3963"},"institutions":[{"id":"https://openalex.org/I47508984","display_name":"Imperial College London","ror":"https://ror.org/041kmwe10","country_code":"GB","type":"funder","lineage":["https://openalex.org/I47508984"]}],"countries":["GB"],"is_corresponding":false,"raw_author_name":"Danilo P. Mandic","raw_affiliation_strings":["Department of Electrical and Electronic Engineering, Imperial College London, London, U.K."],"affiliations":[{"raw_affiliation_string":"Department of Electrical and Electronic Engineering, Imperial College London, London, U.K.","institution_ids":["https://openalex.org/I47508984"]}]}],"institution_assertions":[],"countries_distinct_count":2,"institutions_distinct_count":2,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":{"value":1850,"currency":"USD","value_usd":1850},"apc_paid":{"value":1850,"currency":"USD","value_usd":1850},"fwci":2.089,"has_fulltext":true,"fulltext_origin":"pdf","cited_by_count":20,"citation_normalized_percentile":{"value":0.704891,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":91,"max":92},"biblio":{"volume":"7","issue":null,"first_page":"114261","last_page":"114270"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10640","display_name":"Spectroscopy and Chemometric Analyses","score":0.9978,"subfield":{"id":"https://openalex.org/subfields/1602","display_name":"Analytical Chemistry"},"field":{"id":"https://openalex.org/fields/16","display_name":"Chemistry"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10640","display_name":"Spectroscopy and Chemometric Analyses","score":0.9978,"subfield":{"id":"https://openalex.org/subfields/1602","display_name":"Analytical Chemistry"},"field":{"id":"https://openalex.org/fields/16","display_name":"Chemistry"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10220","display_name":"Machine Fault Diagnosis Techniques","score":0.9724,"subfield":{"id":"https://openalex.org/subfields/2207","display_name":"Control and Systems Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11659","display_name":"Advanced Image Fusion Techniques","score":0.9628,"subfield":{"id":"https://openalex.org/subfields/2214","display_name":"Media Technology"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/hypersphere","display_name":"Hypersphere","score":0.8640549}],"concepts":[{"id":"https://openalex.org/C2776562905","wikidata":"https://www.wikidata.org/wiki/Q306610","display_name":"Hypersphere","level":2,"score":0.8640549},{"id":"https://openalex.org/C25570617","wikidata":"https://www.wikidata.org/wiki/Q1006462","display_name":"Hilbert\u2013Huang transform","level":3,"score":0.67972475},{"id":"https://openalex.org/C161584116","wikidata":"https://www.wikidata.org/wiki/Q1952580","display_name":"Multivariate statistics","level":2,"score":0.664915},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.60086304},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.5882661},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.5632269},{"id":"https://openalex.org/C69744172","wikidata":"https://www.wikidata.org/wiki/Q860822","display_name":"Image fusion","level":3,"score":0.5504254},{"id":"https://openalex.org/C2778755073","wikidata":"https://www.wikidata.org/wiki/Q10858537","display_name":"Scale (ratio)","level":2,"score":0.42253444},{"id":"https://openalex.org/C192209626","wikidata":"https://www.wikidata.org/wiki/Q190909","display_name":"Focus (optics)","level":2,"score":0.42179346},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.38974023},{"id":"https://openalex.org/C115961682","wikidata":"https://www.wikidata.org/wiki/Q860623","display_name":"Image (mathematics)","level":2,"score":0.3317148},{"id":"https://openalex.org/C31972630","wikidata":"https://www.wikidata.org/wiki/Q844240","display_name":"Computer vision","level":1,"score":0.28016707},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.14133716},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C106131492","wikidata":"https://www.wikidata.org/wiki/Q3072260","display_name":"Filter (signal processing)","level":2,"score":0.0},{"id":"https://openalex.org/C62520636","wikidata":"https://www.wikidata.org/wiki/Q944","display_name":"Quantum mechanics","level":1,"score":0.0},{"id":"https://openalex.org/C120665830","wikidata":"https://www.wikidata.org/wiki/Q14620","display_name":"Optics","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":true,"landing_page_url":"https://doi.org/10.1109/access.2019.2936030","pdf_url":"https://ieeexplore.ieee.org/ielx7/6287639/8600701/08805082.pdf","source":{"id":"https://openalex.org/S2485537415","display_name":"IEEE Access","issn_l":"2169-3536","issn":["2169-3536"],"is_oa":true,"is_in_doaj":true,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310319808","host_organization_name":"Institute of Electrical and Electronics Engineers","host_organization_lineage":["https://openalex.org/P4310319808"],"host_organization_lineage_names":["Institute of Electrical and Electronics Engineers"],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1109/access.2019.2936030","pdf_url":"https://ieeexplore.ieee.org/ielx7/6287639/8600701/08805082.pdf","source":{"id":"https://openalex.org/S2485537415","display_name":"IEEE Access","issn_l":"2169-3536","issn":["2169-3536"],"is_oa":true,"is_in_doaj":true,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310319808","host_organization_name":"Institute of Electrical and Electronics Engineers","host_organization_lineage":["https://openalex.org/P4310319808"],"host_organization_lineage_names":["Institute of Electrical and Electronics Engineers"],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},"sustainable_development_goals":[],"grants":[{"funder":"https://openalex.org/F4320321001","funder_display_name":"National Natural Science Foundation of China","award_id":"61771124"},{"funder":"https://openalex.org/F4320324856","funder_display_name":"Southeast University","award_id":null}],"datasets":[],"versions":[],"referenced_works_count":38,"referenced_works":["https://openalex.org/W123101483","https://openalex.org/W1963709092","https://openalex.org/W1976212684","https://openalex.org/W1976836781","https://openalex.org/W1981534255","https://openalex.org/W1992989485","https://openalex.org/W2000261957","https://openalex.org/W2007221293","https://openalex.org/W2014843742","https://openalex.org/W2019247476","https://openalex.org/W2047366584","https://openalex.org/W2052745931","https://openalex.org/W2056346283","https://openalex.org/W2065631633","https://openalex.org/W2077664060","https://openalex.org/W2077896037","https://openalex.org/W2083220560","https://openalex.org/W2098395403","https://openalex.org/W2100329651","https://openalex.org/W2105505196","https://openalex.org/W2105880556","https://openalex.org/W2108391479","https://openalex.org/W2123563890","https://openalex.org/W2123981765","https://openalex.org/W2129990288","https://openalex.org/W2133665775","https://openalex.org/W2136342333","https://openalex.org/W2136401825","https://openalex.org/W2138402108","https://openalex.org/W2149219382","https://openalex.org/W2170044118","https://openalex.org/W2171167603","https://openalex.org/W2228225750","https://openalex.org/W2248436854","https://openalex.org/W2293815254","https://openalex.org/W2884631034","https://openalex.org/W2897667961","https://openalex.org/W598051755"],"related_works":["https://openalex.org/W4389755575","https://openalex.org/W2921850681","https://openalex.org/W2919827088","https://openalex.org/W2725429296","https://openalex.org/W2133653616","https://openalex.org/W2099702253","https://openalex.org/W2079494444","https://openalex.org/W2069017679","https://openalex.org/W2059484267","https://openalex.org/W1970780628"],"abstract_inverted_index":{"Empirical":[0],"mode":[1,22],"decomposition":[2,12,50],"(EMD)":[3],"is":[4,27,55,121,152,167,177],"a":[5,85,139,147],"fully":[6],"data-driven":[7],"technique":[8],"designed":[9],"for":[10,52,74],"multi-scale":[11,118],"of":[13,33,43,49,64,101,110,154,210],"signals":[14],"into":[15],"their":[16],"natural":[17],"scale":[18],"components,":[19],"called":[20],"intrinsic":[21],"functions":[23],"(IMFs).":[24],"When":[25],"EMD":[26,69],"directly":[28,145],"applied":[29],"to":[30,57,60,93,106,125,128,187,206],"perform":[31],"fusion":[32,120,203],"multivariate":[34,68,102,149,182],"data":[35,184],"from":[36],"multiple":[37,82,155,193],"and":[38,97,173,200],"heterogeneous":[39],"sources,":[40,54],"the":[41,61,67,89,95,98,108,111,130,158,162,174,181,208,211],"problem":[42],"uniqueness,":[44],"that":[45],"is,":[46],"different":[47,53],"numbers":[48],"levels":[51],"likely":[56],"occur,":[58],"due":[59,124],"empirical":[62],"nature":[63],"EMD.":[65],"Although":[66],"(MEMD)":[70],"has":[71],"been":[72],"proposed":[73,212],"temporal":[75],"data,":[76],"which":[77,144,151],"employs":[78],"real-valued":[79,170],"projections":[80,172],"along":[81],"directions":[83],"on":[84,157],"unit":[86,159],"hypersphere":[87,160],"in":[88,104,116,161],"$n$":[90,163],"-dimensional":[91,164],"space":[92],"calculate":[94],"envelope":[96],"local":[99],"mean":[100,175],"signals,":[103],"order":[105],"guarantee":[107],"uniqueness":[109],"scales,":[112],"its":[113,126],"direct":[114],"usefulness":[115],"2D":[117],"image":[119,202],"still":[122],"limited,":[123],"inability":[127],"maintain":[129],"spatial":[131],"information.":[132],"To":[133],"address":[134],"this":[135],"issue,":[136],"we":[137],"propose":[138],"novel":[140],"bidimensional":[141,148],"MEMD":[142],"(BMEMD)":[143],"projects":[146],"signal,":[150],"composed":[153],"images,":[156],"space.":[165],"This":[166],"achieved":[168],"via":[169],"surface":[171,176],"estimated":[178],"by":[179],"interpolating":[180],"scatter":[183],"so":[185],"as":[186],"extract":[188],"common":[189],"spatio-temporal":[190],"scales":[191],"across":[192],"images.":[194],"Case":[195],"studies":[196],"involving":[197],"texture":[198],"analysis":[199],"multi-focus":[201],"are":[204],"presented":[205],"demonstrate":[207],"effectiveness":[209],"method.":[213]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2969214403","counts_by_year":[{"year":2025,"cited_by_count":1},{"year":2023,"cited_by_count":4},{"year":2022,"cited_by_count":6},{"year":2021,"cited_by_count":7},{"year":2020,"cited_by_count":2}],"updated_date":"2025-04-15T20:21:44.544009","created_date":"2019-08-29"}