{"id":"https://openalex.org/W2954380692","doi":"https://doi.org/10.1109/access.2019.2926768","title":"Study of Sensitivity to Weight Perturbation for Convolution Neural Network","display_name":"Study of Sensitivity to Weight Perturbation for Convolution Neural Network","publication_year":2019,"publication_date":"2019-01-01","ids":{"openalex":"https://openalex.org/W2954380692","doi":"https://doi.org/10.1109/access.2019.2926768","mag":"2954380692"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1109/access.2019.2926768","pdf_url":"https://ieeexplore.ieee.org/ielx7/6287639/8600701/08755296.pdf","source":{"id":"https://openalex.org/S2485537415","display_name":"IEEE Access","issn_l":"2169-3536","issn":["2169-3536"],"is_oa":true,"is_in_doaj":true,"is_core":true,"host_organization":"https://openalex.org/P4310319808","host_organization_name":"Institute of Electrical and Electronics Engineers","host_organization_lineage":["https://openalex.org/P4310319808"],"host_organization_lineage_names":["Institute of Electrical and Electronics Engineers"],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},"type":"article","type_crossref":"journal-article","indexed_in":["crossref","doaj"],"open_access":{"is_oa":true,"oa_status":"gold","oa_url":"https://ieeexplore.ieee.org/ielx7/6287639/8600701/08755296.pdf","any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5101835173","display_name":"Lin Xiang","orcid":null},"institutions":[{"id":"https://openalex.org/I163340411","display_name":"Hohai University","ror":"https://ror.org/01wd4xt90","country_code":"CN","type":"education","lineage":["https://openalex.org/I163340411"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Lin Xiang","raw_affiliation_strings":["Institute of Intelligence Science and Technology, Hohai University, Nanjing, China"],"affiliations":[{"raw_affiliation_string":"Institute of Intelligence Science and Technology, Hohai University, Nanjing, China","institution_ids":["https://openalex.org/I163340411"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5102017246","display_name":"Xiaoqin Zeng","orcid":"https://orcid.org/0000-0002-4687-901X"},"institutions":[{"id":"https://openalex.org/I163340411","display_name":"Hohai University","ror":"https://ror.org/01wd4xt90","country_code":"CN","type":"education","lineage":["https://openalex.org/I163340411"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Xiaoqin Zeng","raw_affiliation_strings":["Institute of Intelligence Science and Technology, Hohai University, Nanjing, China"],"affiliations":[{"raw_affiliation_string":"Institute of Intelligence Science and Technology, Hohai University, Nanjing, China","institution_ids":["https://openalex.org/I163340411"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5101200322","display_name":"Yuhu Niu","orcid":null},"institutions":[{"id":"https://openalex.org/I163340411","display_name":"Hohai University","ror":"https://ror.org/01wd4xt90","country_code":"CN","type":"education","lineage":["https://openalex.org/I163340411"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Yuhu Niu","raw_affiliation_strings":["Institute of Intelligence Science and Technology, Hohai University, Nanjing, China"],"affiliations":[{"raw_affiliation_string":"Institute of Intelligence Science and Technology, Hohai University, Nanjing, China","institution_ids":["https://openalex.org/I163340411"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5000300924","display_name":"Yanjun Liu","orcid":"https://orcid.org/0000-0002-3086-3785"},"institutions":[{"id":"https://openalex.org/I163340411","display_name":"Hohai University","ror":"https://ror.org/01wd4xt90","country_code":"CN","type":"education","lineage":["https://openalex.org/I163340411"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Yanjun Liu","raw_affiliation_strings":["Institute of Intelligence Science and Technology, Hohai University, Nanjing, China"],"affiliations":[{"raw_affiliation_string":"Institute of Intelligence Science and Technology, Hohai University, Nanjing, China","institution_ids":["https://openalex.org/I163340411"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":{"value":1850,"currency":"USD","value_usd":1850,"provenance":"doaj"},"apc_paid":{"value":1850,"currency":"USD","value_usd":1850,"provenance":"doaj"},"fwci":0.425,"has_fulltext":true,"fulltext_origin":"pdf","cited_by_count":5,"citation_normalized_percentile":{"value":0.807063,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":79,"max":81},"biblio":{"volume":"7","issue":null,"first_page":"93898","last_page":"93908"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10320","display_name":"Neural Networks and Applications","score":0.9996,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10320","display_name":"Neural Networks and Applications","score":0.9996,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11689","display_name":"Adversarial Robustness in Machine Learning","score":0.9989,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12676","display_name":"Machine Learning and ELM","score":0.996,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/convolution","display_name":"Convolution (computer science)","score":0.51195824}],"concepts":[{"id":"https://openalex.org/C177918212","wikidata":"https://www.wikidata.org/wiki/Q803623","display_name":"Perturbation (astronomy)","level":2,"score":0.74761975},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.65199476},{"id":"https://openalex.org/C21200559","wikidata":"https://www.wikidata.org/wiki/Q7451068","display_name":"Sensitivity (control systems)","level":2,"score":0.56937474},{"id":"https://openalex.org/C45347329","wikidata":"https://www.wikidata.org/wiki/Q5166604","display_name":"Convolution (computer science)","level":3,"score":0.51195824},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.48735008},{"id":"https://openalex.org/C2779832538","wikidata":"https://www.wikidata.org/wiki/Q2308809","display_name":"Coincidence","level":3,"score":0.46177778},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.45816663},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.44129983},{"id":"https://openalex.org/C28826006","wikidata":"https://www.wikidata.org/wiki/Q33521","display_name":"Applied mathematics","level":1,"score":0.36442298},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.18432707},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.1283299},{"id":"https://openalex.org/C62520636","wikidata":"https://www.wikidata.org/wiki/Q944","display_name":"Quantum mechanics","level":1,"score":0.0},{"id":"https://openalex.org/C24326235","wikidata":"https://www.wikidata.org/wiki/Q126095","display_name":"Electronic engineering","level":1,"score":0.0},{"id":"https://openalex.org/C127413603","wikidata":"https://www.wikidata.org/wiki/Q11023","display_name":"Engineering","level":0,"score":0.0},{"id":"https://openalex.org/C71924100","wikidata":"https://www.wikidata.org/wiki/Q11190","display_name":"Medicine","level":0,"score":0.0},{"id":"https://openalex.org/C204787440","wikidata":"https://www.wikidata.org/wiki/Q188504","display_name":"Alternative medicine","level":2,"score":0.0},{"id":"https://openalex.org/C142724271","wikidata":"https://www.wikidata.org/wiki/Q7208","display_name":"Pathology","level":1,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":true,"landing_page_url":"https://doi.org/10.1109/access.2019.2926768","pdf_url":"https://ieeexplore.ieee.org/ielx7/6287639/8600701/08755296.pdf","source":{"id":"https://openalex.org/S2485537415","display_name":"IEEE Access","issn_l":"2169-3536","issn":["2169-3536"],"is_oa":true,"is_in_doaj":true,"is_core":true,"host_organization":"https://openalex.org/P4310319808","host_organization_name":"Institute of Electrical and Electronics Engineers","host_organization_lineage":["https://openalex.org/P4310319808"],"host_organization_lineage_names":["Institute of Electrical and Electronics Engineers"],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},{"is_oa":false,"landing_page_url":"https://doaj.org/article/0765e2b6035c4735b2dc09c71ea33c8a","pdf_url":null,"source":{"id":"https://openalex.org/S4306401280","display_name":"DOAJ (DOAJ: Directory of Open Access Journals)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"repository"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1109/access.2019.2926768","pdf_url":"https://ieeexplore.ieee.org/ielx7/6287639/8600701/08755296.pdf","source":{"id":"https://openalex.org/S2485537415","display_name":"IEEE Access","issn_l":"2169-3536","issn":["2169-3536"],"is_oa":true,"is_in_doaj":true,"is_core":true,"host_organization":"https://openalex.org/P4310319808","host_organization_name":"Institute of Electrical and Electronics Engineers","host_organization_lineage":["https://openalex.org/P4310319808"],"host_organization_lineage_names":["Institute of Electrical and Electronics Engineers"],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},"sustainable_development_goals":[{"score":0.72,"display_name":"Climate action","id":"https://metadata.un.org/sdg/13"}],"grants":[{"funder":"https://openalex.org/F4320335787","funder_display_name":"Fundamental Research Funds for the Central Universities","award_id":"2016B44414"},{"funder":"https://openalex.org/F4320335787","funder_display_name":"Fundamental Research Funds for the Central Universities","award_id":"2018B678X14"}],"datasets":[],"versions":[],"referenced_works_count":30,"referenced_works":["https://openalex.org/W115603095","https://openalex.org/W1673923490","https://openalex.org/W1976841235","https://openalex.org/W1984541135","https://openalex.org/W2022508996","https://openalex.org/W2102605133","https://openalex.org/W2106076725","https://openalex.org/W2107808739","https://openalex.org/W2110480233","https://openalex.org/W2112796928","https://openalex.org/W2114027591","https://openalex.org/W2117130368","https://openalex.org/W2125242837","https://openalex.org/W2142395917","https://openalex.org/W2159778339","https://openalex.org/W2160690336","https://openalex.org/W2163605009","https://openalex.org/W2167901303","https://openalex.org/W2169892349","https://openalex.org/W2276892413","https://openalex.org/W2508156266","https://openalex.org/W2535873859","https://openalex.org/W2543927648","https://openalex.org/W2575696673","https://openalex.org/W2603451662","https://openalex.org/W2767471303","https://openalex.org/W2902083778","https://openalex.org/W2962968216","https://openalex.org/W2963674959","https://openalex.org/W2963739340"],"related_works":["https://openalex.org/W4389454697","https://openalex.org/W3098848373","https://openalex.org/W3033220593","https://openalex.org/W3029319512","https://openalex.org/W2138100553","https://openalex.org/W2119125991","https://openalex.org/W2070733898","https://openalex.org/W2007743448","https://openalex.org/W1990560562","https://openalex.org/W1014021808"],"abstract_inverted_index":{"Exploring":[0],"underlying":[1],"properties":[2],"of":[3,35,45,59,78,97,115,132,143,156],"a":[4,20,107,113,147],"neural":[5,17],"network":[6,37],"contributes":[7],"to":[8,23,31,64,69,89,105,152],"pursuing":[9],"its":[10,123],"internal":[11],"behavior":[12],"and":[13,122],"functionality.":[14],"For":[15],"convolution":[16],"networks":[18],"(CNNs),":[19],"sensitivity":[21,52,84,136],"measure":[22],"weight":[24,65,124],"perturbation":[25,66],"is":[26,53,85,111],"introduced":[27],"in":[28],"this":[29],"paper":[30,100],"reflect":[32],"the":[33,36,43,46,49,56,75,81,83,92,99,118,130,133,138,144,154],"extent":[34],"output":[38,61,120,141],"variation,":[39],"which":[40,110],"could":[41],"evaluate":[42,153],"effect":[44],"weights":[47,157],"on":[48,158],"network.":[50,94,145],"The":[51,126],"defined":[54],"as":[55],"mathematical":[57],"expectation":[58],"absolute":[60],"variation":[62,121,142],"due":[63],"with":[67,137],"respect":[68],"all":[70],"possible":[71],"inputs.":[72],"Assuming":[73],"that":[74],"conditional":[76],"distribution":[77],"input":[79],"obeys":[80],"normal,":[82],"iteratively":[86],"computed":[87,134],"layer":[88,90],"until":[91],"entire":[93],"Without":[95],"loss":[96],"generality,":[98],"proposes":[101],"an":[102],"approximate":[103],"algorithm":[104],"compute":[106],"theoretical":[108,135],"sensitivity,":[109],"actually":[112],"function":[114],"mapping":[116],"between":[117],"network's":[119],"perturbation.":[125],"experimental":[127],"results":[128],"demonstrate":[129],"coincidence":[131],"simulated":[139],"actual":[140],"Thus":[146],"criterion":[148],"can":[149],"be":[150],"established":[151],"influence":[155],"CNNs'":[159],"output.":[160]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2954380692","counts_by_year":[{"year":2024,"cited_by_count":1},{"year":2023,"cited_by_count":1},{"year":2022,"cited_by_count":1},{"year":2021,"cited_by_count":2}],"updated_date":"2025-01-03T11:41:09.801663","created_date":"2019-07-12"}