{"id":"https://openalex.org/W2963888388","doi":"https://doi.org/10.1109/access.2019.2923776","title":"Deep Neural Network Based Hyperspectral Pixel Classification With Factorized Spectral-Spatial Feature Representation","display_name":"Deep Neural Network Based Hyperspectral Pixel Classification With Factorized Spectral-Spatial Feature Representation","publication_year":2019,"publication_date":"2019-01-01","ids":{"openalex":"https://openalex.org/W2963888388","doi":"https://doi.org/10.1109/access.2019.2923776","mag":"2963888388"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1109/access.2019.2923776","pdf_url":"https://ieeexplore.ieee.org/ielx7/6287639/8600701/08740867.pdf","source":{"id":"https://openalex.org/S2485537415","display_name":"IEEE Access","issn_l":"2169-3536","issn":["2169-3536"],"is_oa":true,"is_in_doaj":true,"is_core":true,"host_organization":"https://openalex.org/P4310319808","host_organization_name":"Institute of Electrical and Electronics Engineers","host_organization_lineage":["https://openalex.org/P4310319808"],"host_organization_lineage_names":["Institute of Electrical and Electronics Engineers"],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},"type":"article","type_crossref":"journal-article","indexed_in":["crossref"],"open_access":{"is_oa":true,"oa_status":"gold","oa_url":"https://ieeexplore.ieee.org/ielx7/6287639/8600701/08740867.pdf","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5057957690","display_name":"Jingzhou Chen","orcid":"https://orcid.org/0000-0001-7297-4945"},"institutions":[{"id":"https://openalex.org/I76130692","display_name":"Zhejiang University","ror":"https://ror.org/00a2xv884","country_code":"CN","type":"education","lineage":["https://openalex.org/I76130692"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Jingzhou Chen","raw_affiliation_strings":["Institute of Artificial Intelligence, College of Computer Science, Zhejiang University, Hangzhou 310027, China"],"affiliations":[{"raw_affiliation_string":"Institute of Artificial Intelligence, College of Computer Science, Zhejiang University, Hangzhou 310027, China","institution_ids":["https://openalex.org/I76130692"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100325175","display_name":"Siyu Chen","orcid":"https://orcid.org/0000-0002-5726-8345"},"institutions":[{"id":"https://openalex.org/I76130692","display_name":"Zhejiang University","ror":"https://ror.org/00a2xv884","country_code":"CN","type":"education","lineage":["https://openalex.org/I76130692"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Siyu Chen","raw_affiliation_strings":["Institute of Artificial Intelligence, College of Computer Science, Zhejiang University, Hangzhou 310027, China"],"affiliations":[{"raw_affiliation_string":"Institute of Artificial Intelligence, College of Computer Science, Zhejiang University, Hangzhou 310027, China","institution_ids":["https://openalex.org/I76130692"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5052723398","display_name":"Peilin Zhou","orcid":"https://orcid.org/0000-0001-8244-7647"},"institutions":[{"id":"https://openalex.org/I2250955327","display_name":"Huawei Technologies (China)","ror":"https://ror.org/00cmhce21","country_code":"CN","type":"company","lineage":["https://openalex.org/I2250955327"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Peilin Zhou","raw_affiliation_strings":["Huawei Company, Shanghai, China"],"affiliations":[{"raw_affiliation_string":"Huawei Company, Shanghai, China","institution_ids":["https://openalex.org/I2250955327"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5059857918","display_name":"Yuntao Qian","orcid":"https://orcid.org/0000-0002-7418-5891"},"institutions":[{"id":"https://openalex.org/I76130692","display_name":"Zhejiang University","ror":"https://ror.org/00a2xv884","country_code":"CN","type":"education","lineage":["https://openalex.org/I76130692"]}],"countries":["CN"],"is_corresponding":true,"raw_author_name":"Yuntao Qian","raw_affiliation_strings":["Institute of Artificial Intelligence, College of Computer Science, Zhejiang University, Hangzhou 310027, China"],"affiliations":[{"raw_affiliation_string":"Institute of Artificial Intelligence, College of Computer Science, Zhejiang University, Hangzhou 310027, China","institution_ids":["https://openalex.org/I76130692"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":2,"corresponding_author_ids":["https://openalex.org/A5059857918"],"corresponding_institution_ids":["https://openalex.org/I76130692"],"apc_list":{"value":1850,"currency":"USD","value_usd":1850,"provenance":"doaj"},"apc_paid":{"value":1850,"currency":"USD","value_usd":1850,"provenance":"doaj"},"fwci":1.168,"has_fulltext":true,"fulltext_origin":"pdf","cited_by_count":9,"citation_normalized_percentile":{"value":0.817458,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":85,"max":86},"biblio":{"volume":"7","issue":null,"first_page":"81407","last_page":"81418"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10689","display_name":"Remote-Sensing Image Classification","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/2214","display_name":"Media Technology"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10689","display_name":"Remote-Sensing Image Classification","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/2214","display_name":"Media Technology"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T13890","display_name":"Remote Sensing and Land Use","score":0.9966,"subfield":{"id":"https://openalex.org/subfields/1902","display_name":"Atmospheric Science"},"field":{"id":"https://openalex.org/fields/19","display_name":"Earth and Planetary Sciences"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11659","display_name":"Advanced Image Fusion Techniques","score":0.986,"subfield":{"id":"https://openalex.org/subfields/2214","display_name":"Media Technology"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/subnetwork","display_name":"Subnetwork","score":0.856526},{"id":"https://openalex.org/keywords/feature","display_name":"Feature (linguistics)","score":0.58522844},{"id":"https://openalex.org/keywords/hyperspectral","display_name":"Hyperspectral","score":0.575575},{"id":"https://openalex.org/keywords/feature-extraction","display_name":"Feature Extraction","score":0.56674},{"id":"https://openalex.org/keywords/hyperspectral-imaging","display_name":"Hyperspectral Imaging","score":0.563235},{"id":"https://openalex.org/keywords/deep-learning","display_name":"Deep Learning","score":0.547073},{"id":"https://openalex.org/keywords/spatial-pattern-analysis","display_name":"Spatial Pattern Analysis","score":0.542421},{"id":"https://openalex.org/keywords/feature-learning","display_name":"Feature learning","score":0.43763244}],"concepts":[{"id":"https://openalex.org/C159078339","wikidata":"https://www.wikidata.org/wiki/Q959005","display_name":"Hyperspectral imaging","level":2,"score":0.94131434},{"id":"https://openalex.org/C2780186347","wikidata":"https://www.wikidata.org/wiki/Q11414","display_name":"Subnetwork","level":2,"score":0.856526},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.72764367},{"id":"https://openalex.org/C160633673","wikidata":"https://www.wikidata.org/wiki/Q355198","display_name":"Pixel","level":2,"score":0.71346784},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.70539874},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.7000304},{"id":"https://openalex.org/C2776401178","wikidata":"https://www.wikidata.org/wiki/Q12050496","display_name":"Feature (linguistics)","level":2,"score":0.58522844},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.47908098},{"id":"https://openalex.org/C159620131","wikidata":"https://www.wikidata.org/wiki/Q1938983","display_name":"Spatial analysis","level":2,"score":0.4700386},{"id":"https://openalex.org/C52622490","wikidata":"https://www.wikidata.org/wiki/Q1026626","display_name":"Feature extraction","level":2,"score":0.4470913},{"id":"https://openalex.org/C108583219","wikidata":"https://www.wikidata.org/wiki/Q197536","display_name":"Deep learning","level":2,"score":0.44273862},{"id":"https://openalex.org/C59404180","wikidata":"https://www.wikidata.org/wiki/Q17013334","display_name":"Feature learning","level":2,"score":0.43763244},{"id":"https://openalex.org/C62649853","wikidata":"https://www.wikidata.org/wiki/Q199687","display_name":"Remote sensing","level":1,"score":0.25431377},{"id":"https://openalex.org/C205649164","wikidata":"https://www.wikidata.org/wiki/Q1071","display_name":"Geography","level":0,"score":0.05701819},{"id":"https://openalex.org/C38652104","wikidata":"https://www.wikidata.org/wiki/Q3510521","display_name":"Computer security","level":1,"score":0.0},{"id":"https://openalex.org/C138885662","wikidata":"https://www.wikidata.org/wiki/Q5891","display_name":"Philosophy","level":0,"score":0.0},{"id":"https://openalex.org/C41895202","wikidata":"https://www.wikidata.org/wiki/Q8162","display_name":"Linguistics","level":1,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":true,"landing_page_url":"https://doi.org/10.1109/access.2019.2923776","pdf_url":"https://ieeexplore.ieee.org/ielx7/6287639/8600701/08740867.pdf","source":{"id":"https://openalex.org/S2485537415","display_name":"IEEE Access","issn_l":"2169-3536","issn":["2169-3536"],"is_oa":true,"is_in_doaj":true,"is_core":true,"host_organization":"https://openalex.org/P4310319808","host_organization_name":"Institute of Electrical and Electronics Engineers","host_organization_lineage":["https://openalex.org/P4310319808"],"host_organization_lineage_names":["Institute of Electrical and Electronics Engineers"],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/1904.07461","pdf_url":"http://arxiv.org/pdf/1904.07461","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1109/access.2019.2923776","pdf_url":"https://ieeexplore.ieee.org/ielx7/6287639/8600701/08740867.pdf","source":{"id":"https://openalex.org/S2485537415","display_name":"IEEE Access","issn_l":"2169-3536","issn":["2169-3536"],"is_oa":true,"is_in_doaj":true,"is_core":true,"host_organization":"https://openalex.org/P4310319808","host_organization_name":"Institute of Electrical and Electronics Engineers","host_organization_lineage":["https://openalex.org/P4310319808"],"host_organization_lineage_names":["Institute of Electrical and Electronics Engineers"],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},"sustainable_development_goals":[{"id":"https://metadata.un.org/sdg/9","score":0.46,"display_name":"Industry, innovation and infrastructure"}],"grants":[{"funder":"https://openalex.org/F4320321001","funder_display_name":"National Natural Science Foundation of China","award_id":"61571393"},{"funder":"https://openalex.org/F4320335777","funder_display_name":"National Key Research and Development Program of China","award_id":"2018YFB0505000"}],"datasets":[],"versions":[],"referenced_works_count":51,"referenced_works":["https://openalex.org/W1521436688","https://openalex.org/W1522301498","https://openalex.org/W1896996673","https://openalex.org/W1998030734","https://openalex.org/W1998808035","https://openalex.org/W2029316659","https://openalex.org/W2037034832","https://openalex.org/W2043945532","https://openalex.org/W2087263574","https://openalex.org/W2097117768","https://openalex.org/W2102605133","https://openalex.org/W2103094532","https://openalex.org/W2104269704","https://openalex.org/W2106513083","https://openalex.org/W2112739286","https://openalex.org/W2114819256","https://openalex.org/W2116456623","https://openalex.org/W2119144962","https://openalex.org/W2131725398","https://openalex.org/W2136944379","https://openalex.org/W2144172034","https://openalex.org/W2150566919","https://openalex.org/W2154874087","https://openalex.org/W2159874418","https://openalex.org/W2162698522","https://openalex.org/W2163605009","https://openalex.org/W2169500530","https://openalex.org/W2179290474","https://openalex.org/W2183341477","https://openalex.org/W2194775991","https://openalex.org/W2345128667","https://openalex.org/W2500751094","https://openalex.org/W2548791488","https://openalex.org/W2572303978","https://openalex.org/W2611655888","https://openalex.org/W2615706402","https://openalex.org/W2752782242","https://openalex.org/W2753754894","https://openalex.org/W2764276316","https://openalex.org/W2768537477","https://openalex.org/W2775020237","https://openalex.org/W2782517840","https://openalex.org/W2792332881","https://openalex.org/W2885123640","https://openalex.org/W2962936527","https://openalex.org/W2963684088","https://openalex.org/W2964269771","https://openalex.org/W3137695714","https://openalex.org/W4297775537","https://openalex.org/W4385245566","https://openalex.org/W625476304"],"related_works":["https://openalex.org/W4309346246","https://openalex.org/W3087203342","https://openalex.org/W2964117779","https://openalex.org/W2810783540","https://openalex.org/W2472390602","https://openalex.org/W2377184161","https://openalex.org/W228984114","https://openalex.org/W2202198356","https://openalex.org/W2082094785","https://openalex.org/W2060724872"],"abstract_inverted_index":{"Deep":[0],"learning":[1,169],"has":[2],"been":[3],"widely":[4],"used":[5],"for":[6,28,44,94,161],"hyperspectral":[7,29,53,162,174],"pixel":[8,96],"classification":[9,121,132],"due":[10],"to":[11,14,20,76,129],"its":[12,131],"ability":[13],"generate":[15],"deep":[16,159,168],"feature":[17,92],"representation.However,":[18],"how":[19],"construct":[21],"an":[22],"efficient":[23],"and":[24,116,148,191,199],"powerful":[25],"network":[26,40,125,146,197],"suitable":[27],"data":[30,175],"is":[31,42,126,138],"still":[32],"under":[33],"exploration.In":[34],"this":[35],"paper,":[36],"a":[37,67,90,98,112],"novel":[38],"neural":[39],"model":[41,142],"designed":[43],"taking":[45],"full":[46],"advantage":[47],"of":[48,52,100,108,151],"the":[49,70,78,86,101,105,119,123,134,145,149,156,173],"spectral-spatial":[50,158],"structure":[51],"data.First,":[54],"we":[55,84],"extract":[56],"pixelbased":[57],"intrinsic":[58],"features":[59,107],"from":[60],"rich":[61],"yet":[62],"redundant":[63],"spectral":[64,91,106],"bands":[65],"by":[66],"subnetwork":[68,88],"with":[69,165],"supervised":[71],"pretraining":[72],"scheme.Second,":[73],"in":[74,97,111,140],"order":[75],"utilize":[77],"local":[79],"spatial":[80],"correlation":[81],"among":[82],"pixels,":[83],"share":[85],"previous":[87],"as":[89],"extractor":[93],"each":[95],"patch":[99,113],"image,":[102],"after":[103],"which":[104],"all":[109],"pixels":[110],"are":[114],"combined":[115],"fed":[117],"into":[118],"subsequent":[120],"subnetwork.Finally,":[122],"whole":[124],"further":[127],"fine-tuned":[128],"improve":[130],"performance.Especially,":[133],"spectralspatial":[135],"factorization":[136],"scheme":[137],"applied":[139],"our":[141,179],"architecture,":[143],"making":[144],"size":[147,198],"number":[150],"parameters":[152],"great":[153],"less":[154],"than":[155],"existing":[157],"networks":[160],"image":[163],"classification.Compared":[164],"other":[166],"state-of-the-art":[167],"methods,":[170],"experiments":[171],"on":[172,184],"sets":[176],"show":[177],"that":[178],"method":[180],"achieves":[181],"0.18%-7.6%,0.1%-3.58%,and":[182],"0.21%-3.09%improvement":[183],"overall":[185],"accuracy":[186,189],"(OA),":[187],"average":[188],"(AA),":[190],"kappa,":[192],"respectively,":[193],"while":[194],"having":[195],"smaller":[196],"fewer":[200],"parameters.":[201]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2963888388","counts_by_year":[{"year":2023,"cited_by_count":2},{"year":2022,"cited_by_count":1},{"year":2021,"cited_by_count":2},{"year":2020,"cited_by_count":4}],"updated_date":"2024-12-05T04:53:30.947139","created_date":"2019-07-30"}