{"id":"https://openalex.org/W2121981798","doi":"https://doi.org/10.1109/89.466659","title":"Speaker adaptation using constrained estimation of Gaussian mixtures","display_name":"Speaker adaptation using constrained estimation of Gaussian mixtures","publication_year":1995,"publication_date":"1995-01-01","ids":{"openalex":"https://openalex.org/W2121981798","doi":"https://doi.org/10.1109/89.466659","mag":"2121981798"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/89.466659","pdf_url":null,"source":{"id":"https://openalex.org/S202446260","display_name":"IEEE Transactions on Speech and Audio Processing","issn_l":"1063-6676","issn":["1063-6676","1558-2353"],"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310319808","host_organization_name":"Institute of Electrical and Electronics Engineers","host_organization_lineage":["https://openalex.org/P4310319808"],"host_organization_lineage_names":["Institute of Electrical and Electronics Engineers"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"journal-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5030929323","display_name":"Vassilios Digalakis","orcid":"https://orcid.org/0000-0002-1255-8939"},"institutions":[{"id":"https://openalex.org/I1298353152","display_name":"SRI International","ror":"https://ror.org/05s570m15","country_code":"US","type":"nonprofit","lineage":["https://openalex.org/I1298353152"]},{"id":"https://openalex.org/I4210099336","display_name":"Menlo School","ror":"https://ror.org/01240pn49","country_code":"US","type":"education","lineage":["https://openalex.org/I4210099336"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"V.V. Digalakis","raw_affiliation_strings":["SRI Int., Menlo Park, CA, USA"],"affiliations":[{"raw_affiliation_string":"SRI Int., Menlo Park, CA, USA","institution_ids":["https://openalex.org/I1298353152","https://openalex.org/I4210099336"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5089306296","display_name":"Dimitry Rtischev","orcid":null},"institutions":[{"id":"https://openalex.org/I1298353152","display_name":"SRI International","ror":"https://ror.org/05s570m15","country_code":"US","type":"nonprofit","lineage":["https://openalex.org/I1298353152"]},{"id":"https://openalex.org/I4210099336","display_name":"Menlo School","ror":"https://ror.org/01240pn49","country_code":"US","type":"education","lineage":["https://openalex.org/I4210099336"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"D. Rtischev","raw_affiliation_strings":["SRI Int., Menlo Park, CA, USA"],"affiliations":[{"raw_affiliation_string":"SRI Int., Menlo Park, CA, USA","institution_ids":["https://openalex.org/I1298353152","https://openalex.org/I4210099336"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5045989521","display_name":"Leonardo Neumeyer","orcid":null},"institutions":[{"id":"https://openalex.org/I1298353152","display_name":"SRI International","ror":"https://ror.org/05s570m15","country_code":"US","type":"nonprofit","lineage":["https://openalex.org/I1298353152"]},{"id":"https://openalex.org/I4210099336","display_name":"Menlo School","ror":"https://ror.org/01240pn49","country_code":"US","type":"education","lineage":["https://openalex.org/I4210099336"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"L.G. Neumeyer","raw_affiliation_strings":["SRI Int., Menlo Park, CA, USA"],"affiliations":[{"raw_affiliation_string":"SRI Int., Menlo Park, CA, USA","institution_ids":["https://openalex.org/I1298353152","https://openalex.org/I4210099336"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":2,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":8.9,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":381,"citation_normalized_percentile":{"value":0.977244,"is_in_top_1_percent":false,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":99,"max":100},"biblio":{"volume":"3","issue":"5","first_page":"357","last_page":"366"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10201","display_name":"Speech Recognition and Synthesis","score":0.9996,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10201","display_name":"Speech Recognition and Synthesis","score":0.9996,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10860","display_name":"Speech and Audio Processing","score":0.9983,"subfield":{"id":"https://openalex.org/subfields/1711","display_name":"Signal Processing"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11901","display_name":"Bayesian Methods and Mixture Models","score":0.9953,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/robustness","display_name":"Robustness","score":0.6342633},{"id":"https://openalex.org/keywords/word-error-rate","display_name":"Word error rate","score":0.55968654}],"concepts":[{"id":"https://openalex.org/C28490314","wikidata":"https://www.wikidata.org/wiki/Q189436","display_name":"Speech recognition","level":1,"score":0.7914437},{"id":"https://openalex.org/C23224414","wikidata":"https://www.wikidata.org/wiki/Q176769","display_name":"Hidden Markov model","level":2,"score":0.7478376},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.7283615},{"id":"https://openalex.org/C63479239","wikidata":"https://www.wikidata.org/wiki/Q7353546","display_name":"Robustness (evolution)","level":3,"score":0.6342633},{"id":"https://openalex.org/C2777601683","wikidata":"https://www.wikidata.org/wiki/Q6499736","display_name":"Vocabulary","level":2,"score":0.58320844},{"id":"https://openalex.org/C133892786","wikidata":"https://www.wikidata.org/wiki/Q1145189","display_name":"Speaker recognition","level":2,"score":0.5651333},{"id":"https://openalex.org/C61224824","wikidata":"https://www.wikidata.org/wiki/Q2260434","display_name":"Mixture model","level":2,"score":0.56148225},{"id":"https://openalex.org/C40969351","wikidata":"https://www.wikidata.org/wiki/Q3516228","display_name":"Word error rate","level":2,"score":0.55968654},{"id":"https://openalex.org/C139807058","wikidata":"https://www.wikidata.org/wiki/Q352374","display_name":"Adaptation (eye)","level":2,"score":0.53343594},{"id":"https://openalex.org/C163716315","wikidata":"https://www.wikidata.org/wiki/Q901177","display_name":"Gaussian","level":2,"score":0.49205607},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.48559088},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.46347982},{"id":"https://openalex.org/C104317684","wikidata":"https://www.wikidata.org/wiki/Q7187","display_name":"Gene","level":2,"score":0.0},{"id":"https://openalex.org/C55493867","wikidata":"https://www.wikidata.org/wiki/Q7094","display_name":"Biochemistry","level":1,"score":0.0},{"id":"https://openalex.org/C185592680","wikidata":"https://www.wikidata.org/wiki/Q2329","display_name":"Chemistry","level":0,"score":0.0},{"id":"https://openalex.org/C41895202","wikidata":"https://www.wikidata.org/wiki/Q8162","display_name":"Linguistics","level":1,"score":0.0},{"id":"https://openalex.org/C138885662","wikidata":"https://www.wikidata.org/wiki/Q5891","display_name":"Philosophy","level":0,"score":0.0},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C62520636","wikidata":"https://www.wikidata.org/wiki/Q944","display_name":"Quantum mechanics","level":1,"score":0.0},{"id":"https://openalex.org/C120665830","wikidata":"https://www.wikidata.org/wiki/Q14620","display_name":"Optics","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/89.466659","pdf_url":null,"source":{"id":"https://openalex.org/S202446260","display_name":"IEEE Transactions on Speech and Audio Processing","issn_l":"1063-6676","issn":["1063-6676","1558-2353"],"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310319808","host_organization_name":"Institute of Electrical and Electronics Engineers","host_organization_lineage":["https://openalex.org/P4310319808"],"host_organization_lineage_names":["Institute of Electrical and Electronics Engineers"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"score":0.76,"display_name":"Quality education","id":"https://metadata.un.org/sdg/4"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":26,"referenced_works":["https://openalex.org/W1586170454","https://openalex.org/W1851196109","https://openalex.org/W1916422930","https://openalex.org/W1966812932","https://openalex.org/W1967487032","https://openalex.org/W1975800736","https://openalex.org/W1981367467","https://openalex.org/W1984897211","https://openalex.org/W1990005915","https://openalex.org/W2014089984","https://openalex.org/W2024490156","https://openalex.org/W2063698478","https://openalex.org/W2086699924","https://openalex.org/W2095871591","https://openalex.org/W2097268427","https://openalex.org/W2098773974","https://openalex.org/W2104687512","https://openalex.org/W2105217053","https://openalex.org/W2112059504","https://openalex.org/W2139884663","https://openalex.org/W2149957575","https://openalex.org/W2151116432","https://openalex.org/W2165357419","https://openalex.org/W2333269907","https://openalex.org/W3200009295","https://openalex.org/W4230727635"],"related_works":["https://openalex.org/W4324119469","https://openalex.org/W4245698648","https://openalex.org/W2401394187","https://openalex.org/W2381158726","https://openalex.org/W2164868312","https://openalex.org/W2160650576","https://openalex.org/W2150890698","https://openalex.org/W1992908141","https://openalex.org/W1992796048","https://openalex.org/W1197719229"],"abstract_inverted_index":{"A":[0,54],"trend":[1],"in":[2,28,37],"automatic":[3],"speech":[4,66,71],"recognition":[5,20,67,155,183],"systems":[6,24,193],"is":[7,33,47,69,94,133,158],"the":[8,18,45,51,60,74,80,83,89,120,136,154,172,182,189],"use":[9,195],"of":[10,64,91,109,148,166,191],"continuous":[11,86],"mixture-density":[12,87],"hidden":[13],"Markov":[14],"models":[15,72],"(HMMs).":[16],"Despite":[17],"good":[19],"performance":[21,38,61,184],"that":[22,57,194],"these":[23],"achieve":[25],"on":[26,135],"average":[27],"large":[29,35],"vocabulary":[30],"applications,":[31],"there":[32],"a":[34,65,106,123,163],"variability":[36],"across":[39],"speakers.":[40,178],"Performance":[41],"degrades":[42],"dramatically":[43],"when":[44],"user":[46],"radically":[48],"different":[49],"from":[50],"training":[52,200],"population.":[53],"popular":[55],"technique":[56,126],"can":[58],"improve":[59],"and":[62,76,82,98,145,169],"robustness":[63],"system":[68],"adapting":[70],"to":[73,79,104,188],"speaker,":[75],"more":[77],"generally":[78],"channel":[81],"task.":[84],"In":[85],"HMMs":[88],"number":[90],"component":[92],"densities":[93],"typically":[95],"very":[96],"large,":[97],"it":[99,170],"may":[100],"not":[101],"be":[102],"feasible":[103],"acquire":[105],"sufficient":[107],"amount":[108,165],"adaptation":[110,167,186],"data":[111],"for":[112,127,142,176],"robust":[113],"maximum-likelihood":[114],"estimates.":[115],"To":[116],"solve":[117],"this":[118],"problem,":[119],"authors":[121],"propose":[122],"constrained":[124],"estimation":[125],"Gaussian":[128],"mixture":[129],"densities.":[130],"The":[131],"algorithm":[132],"evaluated":[134],"large-vocabulary":[137],"Wall":[138],"Street":[139],"Journal":[140],"corpus":[141],"both":[143],"native":[144,177,180],"nonnative":[146,152],"speakers":[147],"American":[149],"English.":[150],"For":[151,179],"speakers,":[153,181],"error":[156],"rate":[157],"approximately":[159],"halved":[160],"with":[161],"only":[162],"small":[164],"data,":[168],"approaches":[171],"speaker-independent":[173],"accuracy":[174,190],"achieved":[175],"after":[185],"improves":[187],"speaker-dependent":[192],"six":[196],"times":[197],"as":[198],"much":[199],"data.<":[201],">":[204]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2121981798","counts_by_year":[{"year":2023,"cited_by_count":4},{"year":2022,"cited_by_count":6},{"year":2021,"cited_by_count":3},{"year":2020,"cited_by_count":4},{"year":2019,"cited_by_count":9},{"year":2018,"cited_by_count":8},{"year":2017,"cited_by_count":13},{"year":2016,"cited_by_count":18},{"year":2015,"cited_by_count":22},{"year":2014,"cited_by_count":33},{"year":2013,"cited_by_count":19},{"year":2012,"cited_by_count":23}],"updated_date":"2025-01-20T06:15:20.562489","created_date":"2016-06-24"}