{"id":"https://openalex.org/W2169413195","doi":"https://doi.org/10.1109/72.410358","title":"A method for improving classification reliability of multilayer perceptrons","display_name":"A method for improving classification reliability of multilayer perceptrons","publication_year":1995,"publication_date":"1995-01-01","ids":{"openalex":"https://openalex.org/W2169413195","doi":"https://doi.org/10.1109/72.410358","mag":"2169413195","pmid":"https://pubmed.ncbi.nlm.nih.gov/18263404"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/72.410358","pdf_url":null,"source":{"id":"https://openalex.org/S42080949","display_name":"IEEE Transactions on Neural Networks","issn_l":"1045-9227","issn":["1045-9227","1941-0093"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310319808","host_organization_name":"Institute of Electrical and Electronics Engineers","host_organization_lineage":["https://openalex.org/P4310319808"],"host_organization_lineage_names":["Institute of Electrical and Electronics Engineers"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"journal-article","indexed_in":["crossref","pubmed"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5009276474","display_name":"L.P. Cordella","orcid":null},"institutions":[{"id":"https://openalex.org/I71267560","display_name":"University of Naples Federico II","ror":"https://ror.org/05290cv24","country_code":"IT","type":"education","lineage":["https://openalex.org/I71267560"]}],"countries":["IT"],"is_corresponding":false,"raw_author_name":"L.P. Cordella","raw_affiliation_strings":["Dipartimento di Inf. e Sistemistica, Naples Univ."],"affiliations":[{"raw_affiliation_string":"Dipartimento di Inf. e Sistemistica, Naples Univ.","institution_ids":["https://openalex.org/I71267560"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5057804135","display_name":"Claudio De Stefano","orcid":"https://orcid.org/0000-0002-7654-6849"},"institutions":[{"id":"https://openalex.org/I71267560","display_name":"University of Naples Federico II","ror":"https://ror.org/05290cv24","country_code":"IT","type":"education","lineage":["https://openalex.org/I71267560"]}],"countries":["IT"],"is_corresponding":false,"raw_author_name":"C. De Stefano","raw_affiliation_strings":["Dipartimento di Inf. e Sistemistica, Naples Univ., Italy"],"affiliations":[{"raw_affiliation_string":"Dipartimento di Inf. e Sistemistica, Naples Univ., Italy","institution_ids":["https://openalex.org/I71267560"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5050456869","display_name":"Francesco Tortorella","orcid":"https://orcid.org/0000-0002-5033-9323"},"institutions":[{"id":"https://openalex.org/I71267560","display_name":"University of Naples Federico II","ror":"https://ror.org/05290cv24","country_code":"IT","type":"education","lineage":["https://openalex.org/I71267560"]}],"countries":["IT"],"is_corresponding":false,"raw_author_name":"F. Tortorella","raw_affiliation_strings":["Dipartimento di Inf. e Sistemistica, Naples Univ., Italy"],"affiliations":[{"raw_affiliation_string":"Dipartimento di Inf. e Sistemistica, Naples Univ., Italy","institution_ids":["https://openalex.org/I71267560"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5027593663","display_name":"Mario Vento","orcid":"https://orcid.org/0000-0002-2948-741X"},"institutions":[{"id":"https://openalex.org/I71267560","display_name":"University of Naples Federico II","ror":"https://ror.org/05290cv24","country_code":"IT","type":"education","lineage":["https://openalex.org/I71267560"]}],"countries":["IT"],"is_corresponding":false,"raw_author_name":"M. Vento","raw_affiliation_strings":["Dipartimento di Inf. e Sistemistica, Naples Univ., Italy"],"affiliations":[{"raw_affiliation_string":"Dipartimento di Inf. e Sistemistica, Naples Univ., Italy","institution_ids":["https://openalex.org/I71267560"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":2.111,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":102,"citation_normalized_percentile":{"value":0.969995,"is_in_top_1_percent":false,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":96,"max":97},"biblio":{"volume":"6","issue":"5","first_page":"1140","last_page":"1147"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10320","display_name":"Neural Networks and Applications","score":0.9997,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10320","display_name":"Neural Networks and Applications","score":0.9997,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10057","display_name":"Face and Expression Recognition","score":0.9848,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11447","display_name":"Blind Source Separation Techniques","score":0.9751,"subfield":{"id":"https://openalex.org/subfields/1711","display_name":"Signal Processing"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/perceptron","display_name":"Perceptron","score":0.5704727},{"id":"https://openalex.org/keywords/multilayer-perceptron","display_name":"Multilayer perceptron","score":0.4378228}],"concepts":[{"id":"https://openalex.org/C95623464","wikidata":"https://www.wikidata.org/wiki/Q1096149","display_name":"Classifier (UML)","level":2,"score":0.70364034},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.6540491},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.6517621},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.58754843},{"id":"https://openalex.org/C60908668","wikidata":"https://www.wikidata.org/wiki/Q690207","display_name":"Perceptron","level":3,"score":0.5704727},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.5526444},{"id":"https://openalex.org/C179717631","wikidata":"https://www.wikidata.org/wiki/Q2991667","display_name":"Multilayer perceptron","level":3,"score":0.4378228},{"id":"https://openalex.org/C43214815","wikidata":"https://www.wikidata.org/wiki/Q7310987","display_name":"Reliability (semiconductor)","level":3,"score":0.43207836},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.4214821},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.38420185},{"id":"https://openalex.org/C163258240","wikidata":"https://www.wikidata.org/wiki/Q25342","display_name":"Power (physics)","level":2,"score":0.0},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C62520636","wikidata":"https://www.wikidata.org/wiki/Q944","display_name":"Quantum mechanics","level":1,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/72.410358","pdf_url":null,"source":{"id":"https://openalex.org/S42080949","display_name":"IEEE Transactions on Neural Networks","issn_l":"1045-9227","issn":["1045-9227","1941-0093"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310319808","host_organization_name":"Institute of Electrical and Electronics Engineers","host_organization_lineage":["https://openalex.org/P4310319808"],"host_organization_lineage_names":["Institute of Electrical and Electronics Engineers"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://pubmed.ncbi.nlm.nih.gov/18263404","pdf_url":null,"source":{"id":"https://openalex.org/S4306525036","display_name":"PubMed","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I1299303238","host_organization_name":"National Institutes of Health","host_organization_lineage":["https://openalex.org/I1299303238"],"host_organization_lineage_names":["National Institutes of Health"],"type":"repository"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":10,"referenced_works":["https://openalex.org/W1498436455","https://openalex.org/W1588971292","https://openalex.org/W19621276","https://openalex.org/W1978626680","https://openalex.org/W2004075725","https://openalex.org/W2026856674","https://openalex.org/W2110469359","https://openalex.org/W2118377301","https://openalex.org/W2170302354","https://openalex.org/W2256679588"],"related_works":["https://openalex.org/W4387048144","https://openalex.org/W3158157485","https://openalex.org/W3000407446","https://openalex.org/W2523437662","https://openalex.org/W2492135063","https://openalex.org/W2362514456","https://openalex.org/W2243550366","https://openalex.org/W2085842814","https://openalex.org/W2076543106","https://openalex.org/W2019891950"],"abstract_inverted_index":{"Criteria":[0],"for":[1,11,105,186],"evaluating":[2],"the":[3,40,47,64,67,71,74,87,93,103,107,119,124,133,136,145,152,155,167,171],"classification":[4,48,75,137],"reliability":[5],"of":[6,25,33,39,66,73,78,121,135,147,154,170,196],"a":[7,14,54,182,194],"neural":[8,41,183],"classifier":[9,156,184],"and":[10,36,81,99,188],"accordingly":[12],"making":[13],"reject":[15,82,89,97,140,160],"option":[16],"are":[17,116,164,202],"proposed.":[18],"Such":[19],"an":[20],"option,":[21],"implemented":[22],"by":[23,192],"means":[24],"two":[26],"rules":[27],"which":[28,106],"can":[29],"be":[30],"applied":[31],"independently":[32],"topology,":[34],"size,":[35],"training":[37,168],"algorithms":[38],"classifier,":[42],"allows":[43],"one":[44,104],"to":[45],"improve":[46],"reliability.":[49],"It":[50],"is":[51,58,102,142],"assumed":[52],"that":[53,129],"performance":[55],"function":[56,108],"P":[57,109,130],"defined":[59],"which,":[60],"taking":[61],"into":[62],"account":[63],"requirements":[65],"particular":[68],"application,":[69],"evaluates":[70],"quality":[72,134],"in":[76,127],"terms":[77],"recognition,":[79],"misclassification,":[80],"rates.":[83],"Under":[84],"this":[85],"assumption":[86],"optimal":[88],"threshold":[90,141],"value,":[91],"determining":[92],"best":[94],"trade-off":[95],"between":[96],"rate":[98],"misclassification":[100],"rate,":[101],"reaches":[110],"its":[111],"absolute":[112],"maximum.":[113],"No":[114],"constraints":[115],"imposed":[117],"on":[118,144],"form":[120],"P,":[122],"but":[123],"ones":[125],"necessary":[126],"order":[128],"actually":[131],"measures":[132],"process.":[138],"The":[139,176],"evaluated":[143],"basis":[146],"some":[148],"statistical":[149],"distributions":[150,163],"characterizing":[151],"behavior":[153],"when":[157],"operating":[158],"without":[159],"option;":[161],"these":[162],"computed":[165],"once":[166],"phase":[169],"net":[172],"has":[173,178],"been":[174,179],"completed.":[175],"method":[177],"tested":[180],"with":[181],"devised":[185],"handprinted":[187],"multifont":[189],"printed":[190],"characters,":[191],"using":[193],"database":[195],"about":[197],"300000":[198],"samples.":[199],"Experimental":[200],"results":[201],"discussed.":[203]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2169413195","counts_by_year":[{"year":2024,"cited_by_count":7},{"year":2023,"cited_by_count":5},{"year":2022,"cited_by_count":6},{"year":2021,"cited_by_count":9},{"year":2020,"cited_by_count":9},{"year":2019,"cited_by_count":8},{"year":2018,"cited_by_count":3},{"year":2016,"cited_by_count":1},{"year":2015,"cited_by_count":1},{"year":2014,"cited_by_count":3},{"year":2012,"cited_by_count":1}],"updated_date":"2024-12-13T00:55:19.000995","created_date":"2016-06-24"}