{"id":"https://openalex.org/W2033534839","doi":"https://doi.org/10.1109/69.553156","title":"Finding aggregate proximity relationships and commonalities in spatial data mining","display_name":"Finding aggregate proximity relationships and commonalities in spatial data mining","publication_year":1996,"publication_date":"1996-01-01","ids":{"openalex":"https://openalex.org/W2033534839","doi":"https://doi.org/10.1109/69.553156","mag":"2033534839"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/69.553156","pdf_url":null,"source":{"id":"https://openalex.org/S30698027","display_name":"IEEE Transactions on Knowledge and Data Engineering","issn_l":"1041-4347","issn":["1041-4347","1558-2191","2326-3865"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310320439","host_organization_name":"IEEE Computer Society","host_organization_lineage":["https://openalex.org/P4310320439","https://openalex.org/P4310319808"],"host_organization_lineage_names":["IEEE Computer Society","Institute of Electrical and Electronics Engineers"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"journal-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5012032862","display_name":"Edwin M. Knorr","orcid":null},"institutions":[{"id":"https://openalex.org/I141945490","display_name":"University of British Columbia","ror":"https://ror.org/03rmrcq20","country_code":"CA","type":"education","lineage":["https://openalex.org/I141945490"]}],"countries":["CA"],"is_corresponding":false,"raw_author_name":"E.M. Knorr","raw_affiliation_strings":["Dept. of Comput. Sci., British Columbia Univ., Vancouver, BC, Canada#TAB#"],"affiliations":[{"raw_affiliation_string":"Dept. of Comput. Sci., British Columbia Univ., Vancouver, BC, Canada#TAB#","institution_ids":["https://openalex.org/I141945490"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5113567130","display_name":"Raymond T. Ng","orcid":"https://orcid.org/0000-0003-3692-8524"},"institutions":[{"id":"https://openalex.org/I141945490","display_name":"University of British Columbia","ror":"https://ror.org/03rmrcq20","country_code":"CA","type":"education","lineage":["https://openalex.org/I141945490"]}],"countries":["CA"],"is_corresponding":false,"raw_author_name":"R.T. Ng","raw_affiliation_strings":["Department of Computer Science, University of British Columbia, Vancouver, BC Canada."],"affiliations":[{"raw_affiliation_string":"Department of Computer Science, University of British Columbia, Vancouver, BC Canada.","institution_ids":["https://openalex.org/I141945490"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":8.599,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":89,"citation_normalized_percentile":{"value":0.911059,"is_in_top_1_percent":false,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":95,"max":96},"biblio":{"volume":"8","issue":"6","first_page":"884","last_page":"897"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11106","display_name":"Data Management and Algorithms","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/1711","display_name":"Signal Processing"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11106","display_name":"Data Management and Algorithms","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/1711","display_name":"Signal Processing"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10538","display_name":"Data Mining Algorithms and Applications","score":0.9952,"subfield":{"id":"https://openalex.org/subfields/1710","display_name":"Information Systems"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10757","display_name":"Geographic Information Systems Studies","score":0.9949,"subfield":{"id":"https://openalex.org/subfields/3305","display_name":"Geography, Planning and Development"},"field":{"id":"https://openalex.org/fields/33","display_name":"Social Sciences"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/rectangle","display_name":"Rectangle","score":0.7042134},{"id":"https://openalex.org/keywords/data-point","display_name":"Data point","score":0.51473737}],"concepts":[{"id":"https://openalex.org/C4679612","wikidata":"https://www.wikidata.org/wiki/Q866298","display_name":"Aggregate (composite)","level":2,"score":0.70798707},{"id":"https://openalex.org/C2781302577","wikidata":"https://www.wikidata.org/wiki/Q209","display_name":"Rectangle","level":2,"score":0.7042134},{"id":"https://openalex.org/C177148314","wikidata":"https://www.wikidata.org/wiki/Q170084","display_name":"Generalization","level":2,"score":0.6621845},{"id":"https://openalex.org/C206194317","wikidata":"https://www.wikidata.org/wiki/Q1138624","display_name":"Convex hull","level":3,"score":0.65298796},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.63377154},{"id":"https://openalex.org/C21080849","wikidata":"https://www.wikidata.org/wiki/Q13611879","display_name":"Data point","level":2,"score":0.51473737},{"id":"https://openalex.org/C112680207","wikidata":"https://www.wikidata.org/wiki/Q714886","display_name":"Regular polygon","level":2,"score":0.5130304},{"id":"https://openalex.org/C48044578","wikidata":"https://www.wikidata.org/wiki/Q727490","display_name":"Scalability","level":2,"score":0.4964798},{"id":"https://openalex.org/C106131492","wikidata":"https://www.wikidata.org/wiki/Q3072260","display_name":"Filter (signal processing)","level":2,"score":0.49556363},{"id":"https://openalex.org/C164866538","wikidata":"https://www.wikidata.org/wiki/Q367351","display_name":"Cluster (spacecraft)","level":2,"score":0.49462935},{"id":"https://openalex.org/C24881265","wikidata":"https://www.wikidata.org/wiki/Q757267","display_name":"Voronoi diagram","level":2,"score":0.48387325},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.41400945},{"id":"https://openalex.org/C80444323","wikidata":"https://www.wikidata.org/wiki/Q2878974","display_name":"Theoretical computer science","level":1,"score":0.40900224},{"id":"https://openalex.org/C114614502","wikidata":"https://www.wikidata.org/wiki/Q76592","display_name":"Combinatorics","level":1,"score":0.3323688},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.3068586},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.26103833},{"id":"https://openalex.org/C2524010","wikidata":"https://www.wikidata.org/wiki/Q8087","display_name":"Geometry","level":1,"score":0.117655456},{"id":"https://openalex.org/C77088390","wikidata":"https://www.wikidata.org/wiki/Q8513","display_name":"Database","level":1,"score":0.09846002},{"id":"https://openalex.org/C134306372","wikidata":"https://www.wikidata.org/wiki/Q7754","display_name":"Mathematical analysis","level":1,"score":0.0},{"id":"https://openalex.org/C192562407","wikidata":"https://www.wikidata.org/wiki/Q228736","display_name":"Materials science","level":0,"score":0.0},{"id":"https://openalex.org/C159985019","wikidata":"https://www.wikidata.org/wiki/Q181790","display_name":"Composite material","level":1,"score":0.0},{"id":"https://openalex.org/C31972630","wikidata":"https://www.wikidata.org/wiki/Q844240","display_name":"Computer vision","level":1,"score":0.0},{"id":"https://openalex.org/C199360897","wikidata":"https://www.wikidata.org/wiki/Q9143","display_name":"Programming language","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/69.553156","pdf_url":null,"source":{"id":"https://openalex.org/S30698027","display_name":"IEEE Transactions on Knowledge and Data Engineering","issn_l":"1041-4347","issn":["1041-4347","1558-2191","2326-3865"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310320439","host_organization_name":"IEEE Computer Society","host_organization_lineage":["https://openalex.org/P4310320439","https://openalex.org/P4310319808"],"host_organization_lineage_names":["IEEE Computer Society","Institute of Electrical and Electronics Engineers"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"id":"https://metadata.un.org/sdg/11","score":0.5,"display_name":"Sustainable cities and communities"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":27,"referenced_works":["https://openalex.org/W1487801850","https://openalex.org/W1575476631","https://openalex.org/W1584032301","https://openalex.org/W1787564306","https://openalex.org/W1891244760","https://openalex.org/W1956559956","https://openalex.org/W1967005434","https://openalex.org/W1982524776","https://openalex.org/W1995358377","https://openalex.org/W2020655744","https://openalex.org/W2022091696","https://openalex.org/W2074429597","https://openalex.org/W2116013009","https://openalex.org/W2118269922","https://openalex.org/W2126626732","https://openalex.org/W2129879687","https://openalex.org/W2131620262","https://openalex.org/W2151135734","https://openalex.org/W2151631165","https://openalex.org/W2166559705","https://openalex.org/W2167862746","https://openalex.org/W2325227998","https://openalex.org/W2922417532","https://openalex.org/W2997027240","https://openalex.org/W3041834803","https://openalex.org/W3109965180","https://openalex.org/W99422181"],"related_works":["https://openalex.org/W4360958759","https://openalex.org/W3020555194","https://openalex.org/W2962797788","https://openalex.org/W288156810","https://openalex.org/W2793256277","https://openalex.org/W2389906634","https://openalex.org/W2348235448","https://openalex.org/W2116218375","https://openalex.org/W176898926","https://openalex.org/W1562406979"],"abstract_inverted_index":{"Studies":[0],"two":[1],"spatial":[2,159],"knowledge":[3],"discovery":[4],"problems":[5],"involving":[6],"proximity":[7,44,93],"relationships":[8,160],"between":[9],"clusters":[10,84],"and":[11,64,68,126,137,142,148,157],"features.":[12,144],"The":[13,78,145],"first":[14,110],"problem":[15,80],"is:":[16,81],"given":[17,82,163],"a":[18,57,62,162],"cluster":[19,58,164],"of":[20,37,54,70,85,104,115,121,169,182,192],"points,":[21,86],"how":[22,87],"can":[23,88,152],"we":[24,89],"efficiently":[25],"find":[26],"features":[27,71,156],"(represented":[28],"as":[29],"polygons)":[30],"that":[31,97,189,201],"are":[32],"closest":[33],"to":[34,50,99,140,195],"the":[35,40,51,65,91,105,109,112,116,119,173,176,180],"majority":[36],"points":[38,55],"in":[39,45,56,165],"cluster?":[41],"We":[42],"measure":[43],"an":[46],"aggregate":[47,92],"sense":[48],"due":[49],"nonuniform":[52],"distribution":[53],"(e.g.":[59,72],"houses":[60],"on":[61],"map),":[63],"different":[66],"shapes":[67],"sizes":[69],"natural":[73],"or":[74],"man-made":[75],"geographic":[76],"features).":[77],"second":[79,168,174],"n":[83,106],"extract":[90],"commonalities":[94,200],"(i.e.":[95,132],"features)":[96],"apply":[98],"most,":[100],"if":[101],"not":[102],"all,":[103],"clusters?":[107],"Regarding":[108,172],"problem,":[111,175],"main":[113],"contribution":[114,178],"paper":[117],"is":[118,179],"development":[120,181],"Algorithm":[122,150,183],"CRH":[123,151],"(Circle,":[124],"Rectangle":[125],"Hull),":[127],"which":[128],"uses":[129],"geometric":[130],"approximations":[131],"encompassing":[133],"circles,":[134],"isothetic":[135],"rectangles":[136],"convex":[138],"hulls)":[139],"filter":[141],"select":[143],"highly":[146],"scalable":[147],"incremental":[149],"examine":[153],"over":[154],"50,000":[155],"their":[158],"with":[161],"approximately":[166],"one":[167],"CPU":[170],"time.":[171],"key":[177],"GenCom":[184],"(Generalization":[185],"for":[186],"Commonality":[187],"extraction)":[188],"makes":[190],"use":[191],"concept":[193],"generalization":[194],"effectively":[196],"derive":[197],"many":[198],"meaningful":[199],"cannot":[202],"be":[203],"found":[204],"otherwise.":[205]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2033534839","counts_by_year":[{"year":2021,"cited_by_count":1},{"year":2016,"cited_by_count":3},{"year":2015,"cited_by_count":2},{"year":2013,"cited_by_count":4},{"year":2012,"cited_by_count":3}],"updated_date":"2024-12-14T22:12:04.344538","created_date":"2016-06-24"}