{"id":"https://openalex.org/W4399563882","doi":"https://doi.org/10.1109/3dv62453.2024.00153","title":"Test-Time Augmentation for 3D Point Cloud Classification and Segmentation","display_name":"Test-Time Augmentation for 3D Point Cloud Classification and Segmentation","publication_year":2024,"publication_date":"2024-03-18","ids":{"openalex":"https://openalex.org/W4399563882","doi":"https://doi.org/10.1109/3dv62453.2024.00153"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/3dv62453.2024.00153","pdf_url":null,"source":{"id":"https://openalex.org/S4363608458","display_name":"2021 International Conference on 3D Vision (3DV)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"http://arxiv.org/pdf/2311.13152","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5075040240","display_name":"Tuan-Anh Vu","orcid":"https://orcid.org/0000-0002-8872-0875"},"institutions":[{"id":"https://openalex.org/I200769079","display_name":"Hong Kong University of Science and Technology","ror":"https://ror.org/00q4vv597","country_code":"HK","type":"funder","lineage":["https://openalex.org/I200769079"]},{"id":"https://openalex.org/I889458895","display_name":"University of Hong Kong","ror":"https://ror.org/02zhqgq86","country_code":"HK","type":"funder","lineage":["https://openalex.org/I889458895"]}],"countries":["HK"],"is_corresponding":false,"raw_author_name":"Tuan-Anh Vu","raw_affiliation_strings":["The Hong Kong University of Science and Technology"],"affiliations":[{"raw_affiliation_string":"The Hong Kong University of Science and Technology","institution_ids":["https://openalex.org/I200769079","https://openalex.org/I889458895"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5090068402","display_name":"Srinjay Sarkar","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Srinjay Sarkar","raw_affiliation_strings":["VinAI Research"],"affiliations":[{"raw_affiliation_string":"VinAI Research","institution_ids":[]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5014625391","display_name":"Zhiyuan Zhang","orcid":"https://orcid.org/0000-0003-3945-5638"},"institutions":[{"id":"https://openalex.org/I79891267","display_name":"Singapore Management University","ror":"https://ror.org/050qmg959","country_code":"SG","type":"funder","lineage":["https://openalex.org/I79891267"]}],"countries":["SG"],"is_corresponding":false,"raw_author_name":"Zhiyuan Zhang","raw_affiliation_strings":["Singapore Management University"],"affiliations":[{"raw_affiliation_string":"Singapore Management University","institution_ids":["https://openalex.org/I79891267"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5028533837","display_name":"Binh\u2010Son Hua","orcid":"https://orcid.org/0000-0002-5706-8634"},"institutions":[{"id":"https://openalex.org/I205274468","display_name":"Trinity College Dublin","ror":"https://ror.org/02tyrky19","country_code":"IE","type":"funder","lineage":["https://openalex.org/I205274468"]}],"countries":["IE"],"is_corresponding":false,"raw_author_name":"Binh-Son Hua","raw_affiliation_strings":["Trinity College Dublin"],"affiliations":[{"raw_affiliation_string":"Trinity College Dublin","institution_ids":["https://openalex.org/I205274468"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5027689970","display_name":"Sai-Kit Yeung","orcid":"https://orcid.org/0000-0001-7974-0607"},"institutions":[{"id":"https://openalex.org/I200769079","display_name":"Hong Kong University of Science and Technology","ror":"https://ror.org/00q4vv597","country_code":"HK","type":"funder","lineage":["https://openalex.org/I200769079"]},{"id":"https://openalex.org/I889458895","display_name":"University of Hong Kong","ror":"https://ror.org/02zhqgq86","country_code":"HK","type":"funder","lineage":["https://openalex.org/I889458895"]}],"countries":["HK"],"is_corresponding":false,"raw_author_name":"Sai-Kit Yeung","raw_affiliation_strings":["The Hong Kong University of Science and Technology"],"affiliations":[{"raw_affiliation_string":"The Hong Kong University of Science and Technology","institution_ids":["https://openalex.org/I200769079","https://openalex.org/I889458895"]}]}],"institution_assertions":[],"countries_distinct_count":3,"institutions_distinct_count":4,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":1.973,"has_fulltext":false,"cited_by_count":2,"citation_normalized_percentile":{"value":0.999922,"is_in_top_1_percent":true,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":88,"max":92},"biblio":{"volume":null,"issue":null,"first_page":"1543","last_page":"1553"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10719","display_name":"3D Shape Modeling and Analysis","score":0.9998,"subfield":{"id":"https://openalex.org/subfields/2206","display_name":"Computational Mechanics"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10719","display_name":"3D Shape Modeling and Analysis","score":0.9998,"subfield":{"id":"https://openalex.org/subfields/2206","display_name":"Computational Mechanics"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11211","display_name":"3D Surveying and Cultural Heritage","score":0.9975,"subfield":{"id":"https://openalex.org/subfields/1907","display_name":"Geology"},"field":{"id":"https://openalex.org/fields/19","display_name":"Earth and Planetary Sciences"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10481","display_name":"Computer Graphics and Visualization Techniques","score":0.995,"subfield":{"id":"https://openalex.org/subfields/1704","display_name":"Computer Graphics and Computer-Aided Design"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[],"concepts":[{"id":"https://openalex.org/C131979681","wikidata":"https://www.wikidata.org/wiki/Q1899648","display_name":"Point cloud","level":2,"score":0.64472306},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.6403906},{"id":"https://openalex.org/C2777267654","wikidata":"https://www.wikidata.org/wiki/Q3519023","display_name":"Test (biology)","level":2,"score":0.60702956},{"id":"https://openalex.org/C89600930","wikidata":"https://www.wikidata.org/wiki/Q1423946","display_name":"Segmentation","level":2,"score":0.49634057},{"id":"https://openalex.org/C79974875","wikidata":"https://www.wikidata.org/wiki/Q483639","display_name":"Cloud computing","level":2,"score":0.4900116},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.45822558},{"id":"https://openalex.org/C31972630","wikidata":"https://www.wikidata.org/wiki/Q844240","display_name":"Computer vision","level":1,"score":0.35131606},{"id":"https://openalex.org/C127313418","wikidata":"https://www.wikidata.org/wiki/Q1069","display_name":"Geology","level":0,"score":0.18746772},{"id":"https://openalex.org/C111919701","wikidata":"https://www.wikidata.org/wiki/Q9135","display_name":"Operating system","level":1,"score":0.11792004},{"id":"https://openalex.org/C151730666","wikidata":"https://www.wikidata.org/wiki/Q7205","display_name":"Paleontology","level":1,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/3dv62453.2024.00153","pdf_url":null,"source":{"id":"https://openalex.org/S4363608458","display_name":"2021 International Conference on 3D Vision (3DV)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2311.13152","pdf_url":"http://arxiv.org/pdf/2311.13152","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2311.13152","pdf_url":"http://arxiv.org/pdf/2311.13152","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":75,"referenced_works":["https://openalex.org/W1709548961","https://openalex.org/W1901129140","https://openalex.org/W1920022804","https://openalex.org/W1988317275","https://openalex.org/W2097117768","https://openalex.org/W2137531922","https://openalex.org/W2169611956","https://openalex.org/W2173160820","https://openalex.org/W2194775991","https://openalex.org/W2342277278","https://openalex.org/W2460657278","https://openalex.org/W2464708700","https://openalex.org/W2518780089","https://openalex.org/W2546066744","https://openalex.org/W2559882727","https://openalex.org/W2560722161","https://openalex.org/W2565662353","https://openalex.org/W2591957553","https://openalex.org/W2594519801","https://openalex.org/W2609719703","https://openalex.org/W267862395","https://openalex.org/W2698857938","https://openalex.org/W2795014656","https://openalex.org/W2798297823","https://openalex.org/W2798314605","https://openalex.org/W2798670728","https://openalex.org/W2798777114","https://openalex.org/W2883221003","https://openalex.org/W2884154111","https://openalex.org/W2887976372","https://openalex.org/W2905288042","https://openalex.org/W2954258401","https://openalex.org/W2962928871","https://openalex.org/W2963046128","https://openalex.org/W2963121255","https://openalex.org/W2963158438","https://openalex.org/W2963182550","https://openalex.org/W2963226018","https://openalex.org/W2963281829","https://openalex.org/W2963509914","https://openalex.org/W2963517242","https://openalex.org/W2963627347","https://openalex.org/W2963680153","https://openalex.org/W2963926543","https://openalex.org/W2963995996","https://openalex.org/W2965066169","https://openalex.org/W2969694596","https://openalex.org/W2971278627","https://openalex.org/W2979750740","https://openalex.org/W2981440248","https://openalex.org/W2981983525","https://openalex.org/W2986615800","https://openalex.org/W2991216808","https://openalex.org/W3012478585","https://openalex.org/W3012494314","https://openalex.org/W3035363555","https://openalex.org/W3094614513","https://openalex.org/W3095682719","https://openalex.org/W3103351485","https://openalex.org/W3107479685","https://openalex.org/W3107607767","https://openalex.org/W3109944402","https://openalex.org/W3116730076","https://openalex.org/W3117476483","https://openalex.org/W3124139043","https://openalex.org/W3137466219","https://openalex.org/W3175676582","https://openalex.org/W4214755140","https://openalex.org/W4226237684","https://openalex.org/W4233857083","https://openalex.org/W4236965008","https://openalex.org/W4281732104","https://openalex.org/W4287864845","https://openalex.org/W4312602556","https://openalex.org/W4394671432"],"related_works":["https://openalex.org/W4399442168","https://openalex.org/W4389340727","https://openalex.org/W4244478748","https://openalex.org/W4223488648","https://openalex.org/W3150465815","https://openalex.org/W2560439919","https://openalex.org/W2251605416","https://openalex.org/W2134969820","https://openalex.org/W2114282491","https://openalex.org/W1997222214"],"abstract_inverted_index":{"Data":[0],"augmentation":[1,51,145],"is":[2,25,84],"a":[3,11,97],"powerful":[4],"technique":[5],"to":[6,85,100,148],"enhance":[7],"the":[8,39,42,61,87,114,119,163],"performance":[9,40,151],"of":[10,41,64],"deep":[12,22],"learning":[13,65],"task":[14],"but":[15],"has":[16],"received":[17],"less":[18],"attention":[19],"in":[20,134],"3D":[21,30,54,76],"learning.":[23],"It":[24],"well":[26],"known":[27],"that":[28,129,139],"when":[29],"shapes":[31],"are":[32,58,132],"sparsely":[33],"represented":[34],"with":[35],"low":[36],"point":[37,55,69,92,102,121,140,173],"density,":[38],"downstream":[43,154],"tasks":[44,155],"drops":[45],"significantly.":[46],"This":[47],"work":[48],"explores":[49],"test-time":[50,124,144],"(TTA)":[52],"for":[53,143,171],"clouds.":[56,174],"We":[57,127,137],"inspired":[59],"by":[60,110],"recent":[62],"revolution":[63],"implicit":[66,88],"representation":[67],"and":[68,79,117,160,167],"cloud":[70,93,103,122,141],"upsampling,":[71],"which":[72],"can":[73,146],"produce":[74],"high-quality":[75],"surface":[77],"reconstruction":[78,90],"proximity-to-surface,":[80],"respectively.":[81],"Our":[82],"idea":[83],"leverage":[86],"field":[89],"or":[91],"upsampling":[94,142],"techniques":[95],"as":[96,123,157],"systematic":[98],"way":[99],"augment":[101],"data.":[104,126],"Mainly,":[105],"we":[106],"test":[107],"both":[108,130],"strategies":[109,131],"sampling":[111],"points":[112],"from":[113],"reconstructed":[115],"results":[116],"using":[118],"sampled":[120],"augmented":[125],"show":[128],"effective":[133],"improving":[135],"accuracy.":[136],"observed":[138],"lead":[147],"more":[149],"significant":[150],"improvement":[152],"on":[153,162],"such":[156],"object":[158],"classification":[159],"segmentation":[161],"ModelNet40,":[164],"ShapeNet,":[165],"ScanObjectNN,":[166],"SemanticKITTI":[168],"datasets,":[169],"especially":[170],"sparse":[172]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4399563882","counts_by_year":[{"year":2025,"cited_by_count":1},{"year":2024,"cited_by_count":1}],"updated_date":"2025-04-24T16:46:24.754674","created_date":"2024-06-13"}