{"id":"https://openalex.org/W2092285322","doi":"https://doi.org/10.1109/3dv.2014.29","title":"Least MSE Regression for View Synthesis","display_name":"Least MSE Regression for View Synthesis","publication_year":2014,"publication_date":"2014-12-01","ids":{"openalex":"https://openalex.org/W2092285322","doi":"https://doi.org/10.1109/3dv.2014.29","mag":"2092285322"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/3dv.2014.29","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5051781184","display_name":"Keita Takahashi","orcid":"https://orcid.org/0000-0001-9429-5273"},"institutions":[{"id":"https://openalex.org/I60134161","display_name":"Nagoya University","ror":"https://ror.org/04chrp450","country_code":"JP","type":"funder","lineage":["https://openalex.org/I60134161"]}],"countries":["JP"],"is_corresponding":false,"raw_author_name":"Keita Takahashi","raw_affiliation_strings":["Nagoya University, Nagoya, Japan"],"affiliations":[{"raw_affiliation_string":"Nagoya University, Nagoya, Japan","institution_ids":["https://openalex.org/I60134161"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5055835358","display_name":"Toshiaki Fujii","orcid":"https://orcid.org/0000-0002-3440-5132"},"institutions":[{"id":"https://openalex.org/I60134161","display_name":"Nagoya University","ror":"https://ror.org/04chrp450","country_code":"JP","type":"funder","lineage":["https://openalex.org/I60134161"]}],"countries":["JP"],"is_corresponding":false,"raw_author_name":"Toshiaki Fujii","raw_affiliation_strings":["Nagoya University, Nagoya, Japan"],"affiliations":[{"raw_affiliation_string":"Nagoya University, Nagoya, Japan","institution_ids":["https://openalex.org/I60134161"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.0,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":66},"biblio":{"volume":null,"issue":null,"first_page":"385","last_page":"392"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10531","display_name":"Advanced Vision and Imaging","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10531","display_name":"Advanced Vision and Imaging","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11105","display_name":"Advanced Image Processing Techniques","score":0.9988,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11019","display_name":"Image Enhancement Techniques","score":0.9984,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/viewpoints","display_name":"Viewpoints","score":0.43883193}],"concepts":[{"id":"https://openalex.org/C183115368","wikidata":"https://www.wikidata.org/wiki/Q856577","display_name":"Weighting","level":2,"score":0.71085906},{"id":"https://openalex.org/C139945424","wikidata":"https://www.wikidata.org/wiki/Q1940696","display_name":"Mean squared error","level":2,"score":0.617272},{"id":"https://openalex.org/C178650346","wikidata":"https://www.wikidata.org/wiki/Q201984","display_name":"Covariance","level":2,"score":0.6101804},{"id":"https://openalex.org/C160633673","wikidata":"https://www.wikidata.org/wiki/Q355198","display_name":"Pixel","level":2,"score":0.5599223},{"id":"https://openalex.org/C192209626","wikidata":"https://www.wikidata.org/wiki/Q190909","display_name":"Focus (optics)","level":2,"score":0.5318199},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.50902677},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.50532657},{"id":"https://openalex.org/C115961682","wikidata":"https://www.wikidata.org/wiki/Q860623","display_name":"Image (mathematics)","level":2,"score":0.47153383},{"id":"https://openalex.org/C83546350","wikidata":"https://www.wikidata.org/wiki/Q1139051","display_name":"Regression","level":2,"score":0.46766344},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.44824985},{"id":"https://openalex.org/C48921125","wikidata":"https://www.wikidata.org/wiki/Q10861030","display_name":"Linear regression","level":2,"score":0.443129},{"id":"https://openalex.org/C2776035091","wikidata":"https://www.wikidata.org/wiki/Q7928819","display_name":"Viewpoints","level":2,"score":0.43883193},{"id":"https://openalex.org/C99498987","wikidata":"https://www.wikidata.org/wiki/Q2210247","display_name":"Noise (video)","level":3,"score":0.42209727},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.41807267},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.37066513},{"id":"https://openalex.org/C105795698","wikidata":"https://www.wikidata.org/wiki/Q12483","display_name":"Statistics","level":1,"score":0.35823026},{"id":"https://openalex.org/C126255220","wikidata":"https://www.wikidata.org/wiki/Q141495","display_name":"Mathematical optimization","level":1,"score":0.33198},{"id":"https://openalex.org/C142362112","wikidata":"https://www.wikidata.org/wiki/Q735","display_name":"Art","level":0,"score":0.0},{"id":"https://openalex.org/C153349607","wikidata":"https://www.wikidata.org/wiki/Q36649","display_name":"Visual arts","level":1,"score":0.0},{"id":"https://openalex.org/C71924100","wikidata":"https://www.wikidata.org/wiki/Q11190","display_name":"Medicine","level":0,"score":0.0},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C120665830","wikidata":"https://www.wikidata.org/wiki/Q14620","display_name":"Optics","level":1,"score":0.0},{"id":"https://openalex.org/C126838900","wikidata":"https://www.wikidata.org/wiki/Q77604","display_name":"Radiology","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/3dv.2014.29","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"display_name":"Peace, justice, and strong institutions","score":0.66,"id":"https://metadata.un.org/sdg/16"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":21,"referenced_works":["https://openalex.org/W1510073064","https://openalex.org/W1746819321","https://openalex.org/W1755117326","https://openalex.org/W1970212628","https://openalex.org/W1996473668","https://openalex.org/W2000818808","https://openalex.org/W2004190369","https://openalex.org/W2014504480","https://openalex.org/W2064096968","https://openalex.org/W2082231847","https://openalex.org/W2098362450","https://openalex.org/W2103690638","https://openalex.org/W2104974755","https://openalex.org/W2105908634","https://openalex.org/W2140413429","https://openalex.org/W2161767008","https://openalex.org/W2168790157","https://openalex.org/W2238402354","https://openalex.org/W2294015878","https://openalex.org/W2904816695","https://openalex.org/W4211049957"],"related_works":["https://openalex.org/W93537448","https://openalex.org/W4400591661","https://openalex.org/W2949734191","https://openalex.org/W2902924992","https://openalex.org/W2626642044","https://openalex.org/W2619807045","https://openalex.org/W2575795810","https://openalex.org/W2388758053","https://openalex.org/W2385368906","https://openalex.org/W2017333877"],"abstract_inverted_index":{"View":[0],"synthesis":[1],"is":[2,26,60,70,101,159,166],"the":[3,23,29,33,37,43,49,54,82,88,91,96,99,121,124,134,163],"process":[4],"of":[5,22,32,45,53,90],"combining":[6],"given":[7,164],"multi-view":[8,180],"images":[9],"to":[10,47,86,171,182],"generate":[11],"an":[12],"image":[13],"from":[14,36,146],"a":[15,73,104,109,132],"new":[16,24],"viewpoint.":[17],"Assuming":[18],"that":[19],"each":[20,52,117],"pixel":[21],"view":[25],"obtained":[27,148],"as":[28,72,103,154],"weighted":[30],"sum":[31],"corresponding":[34],"pixels":[35],"input":[38,55],"views,":[39],"we":[40],"focus":[41],"on":[42,175],"problem":[44,75],"how":[46],"optimize":[48],"weight":[50],"for":[51,116],"views.":[56],"Our":[57,157],"weighting":[58],"method":[59,139,158],"called":[61],"least":[62],"mean":[63],"squared":[64],"error":[65],"(MSE)":[66],"regression":[67,74],"because":[68],"it":[69],"formulated":[71],"in":[76],"which":[77],"second":[78],"order":[79],"statistics":[80],"among":[81],"viewpoints":[83,100],"are":[84,114,140],"exploited":[85],"minimize":[87],"MSE":[89],"resulting":[92],"image.":[93],"More":[94],"specifically,":[95],"affinity":[97],"across":[98],"represented":[102],"covariance":[105],"and":[106,143,186],"approximated":[107,122],"using":[108,120,137,149,178],"linear":[110],"model":[111],"whose":[112],"parameters":[113],"adapted":[115],"dataset.":[118],"By":[119],"covariance,":[123],"optimal":[125],"weights":[126,135],"can":[127],"be":[128],"successfully":[129],"estimated.":[130],"As":[131],"result,":[133],"derived":[136],"our":[138,184],"data":[141],"dependent":[142],"significantly":[144],"differ":[145],"those":[147],"current":[150],"empirical":[151],"methods":[152],"such":[153],"distance":[155],"penalty.":[156],"still":[160],"effective":[161],"if":[162],"correspondence":[165],"not":[167],"completely":[168],"accurate":[169],"due":[170],"noise.":[172],"We":[173],"report":[174],"experimental":[176],"results":[177],"several":[179],"datasets":[181],"validate":[183],"theory":[185],"method.":[187]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2092285322","counts_by_year":[],"updated_date":"2025-01-25T03:54:01.747979","created_date":"2016-06-24"}