{"id":"https://openalex.org/W1976204400","doi":"https://doi.org/10.1109/3dv.2014.108","title":"Learning 3D Part Detection from Sparsely Labeled Data","display_name":"Learning 3D Part Detection from Sparsely Labeled Data","publication_year":2014,"publication_date":"2014-12-01","ids":{"openalex":"https://openalex.org/W1976204400","doi":"https://doi.org/10.1109/3dv.2014.108","mag":"1976204400"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/3dv.2014.108","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5087850633","display_name":"Ameesh Makadia","orcid":null},"institutions":[{"id":"https://openalex.org/I1291425158","display_name":"Google (United States)","ror":"https://ror.org/00njsd438","country_code":"US","type":"funder","lineage":["https://openalex.org/I1291425158","https://openalex.org/I4210128969"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Ameesh Makadia","raw_affiliation_strings":["Google, New York, NY, USA"],"affiliations":[{"raw_affiliation_string":"Google, New York, NY, USA","institution_ids":["https://openalex.org/I1291425158"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5043886864","display_name":"Mehmet Ers\u0131n Y\u00fcmer","orcid":null},"institutions":[{"id":"https://openalex.org/I74973139","display_name":"Carnegie Mellon University","ror":"https://ror.org/05x2bcf33","country_code":"US","type":"funder","lineage":["https://openalex.org/I74973139"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Mehmet Ersin Yumer","raw_affiliation_strings":["Carnegie-Mellon University, Pittsburgh, Pa., USA#TAB#"],"affiliations":[{"raw_affiliation_string":"Carnegie-Mellon University, Pittsburgh, Pa., USA#TAB#","institution_ids":["https://openalex.org/I74973139"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":2,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":2.297,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":15,"citation_normalized_percentile":{"value":0.907198,"is_in_top_1_percent":false,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":88,"max":89},"biblio":{"volume":"6","issue":null,"first_page":"311","last_page":"318"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10719","display_name":"3D Shape Modeling and Analysis","score":0.9998,"subfield":{"id":"https://openalex.org/subfields/2206","display_name":"Computational Mechanics"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10719","display_name":"3D Shape Modeling and Analysis","score":0.9998,"subfield":{"id":"https://openalex.org/subfields/2206","display_name":"Computational Mechanics"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T14339","display_name":"Image Processing and 3D Reconstruction","score":0.999,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11211","display_name":"3D Surveying and Cultural Heritage","score":0.999,"subfield":{"id":"https://openalex.org/subfields/1907","display_name":"Geology"},"field":{"id":"https://openalex.org/fields/19","display_name":"Earth and Planetary Sciences"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/labeled-data","display_name":"Labeled data","score":0.4961458}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.8054968},{"id":"https://openalex.org/C36464697","wikidata":"https://www.wikidata.org/wiki/Q451553","display_name":"Visualization","level":2,"score":0.67355597},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.6509937},{"id":"https://openalex.org/C31487907","wikidata":"https://www.wikidata.org/wiki/Q1154597","display_name":"Polygon mesh","level":2,"score":0.6273037},{"id":"https://openalex.org/C89600930","wikidata":"https://www.wikidata.org/wiki/Q1423946","display_name":"Segmentation","level":2,"score":0.5921512},{"id":"https://openalex.org/C80899671","wikidata":"https://www.wikidata.org/wiki/Q1304193","display_name":"Vertex (graph theory)","level":3,"score":0.5468138},{"id":"https://openalex.org/C94124525","wikidata":"https://www.wikidata.org/wiki/Q912550","display_name":"Categorization","level":2,"score":0.5325825},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.51624775},{"id":"https://openalex.org/C2776151529","wikidata":"https://www.wikidata.org/wiki/Q3045304","display_name":"Object detection","level":3,"score":0.5138891},{"id":"https://openalex.org/C2776145971","wikidata":"https://www.wikidata.org/wiki/Q30673951","display_name":"Labeled data","level":2,"score":0.4961458},{"id":"https://openalex.org/C2781238097","wikidata":"https://www.wikidata.org/wiki/Q175026","display_name":"Object (grammar)","level":2,"score":0.4808422},{"id":"https://openalex.org/C124504099","wikidata":"https://www.wikidata.org/wiki/Q56933","display_name":"Image segmentation","level":3,"score":0.4215688},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.3998913},{"id":"https://openalex.org/C31972630","wikidata":"https://www.wikidata.org/wiki/Q844240","display_name":"Computer vision","level":1,"score":0.39305645},{"id":"https://openalex.org/C121684516","wikidata":"https://www.wikidata.org/wiki/Q7600677","display_name":"Computer graphics (images)","level":1,"score":0.1248115},{"id":"https://openalex.org/C80444323","wikidata":"https://www.wikidata.org/wiki/Q2878974","display_name":"Theoretical computer science","level":1,"score":0.10431674},{"id":"https://openalex.org/C132525143","wikidata":"https://www.wikidata.org/wiki/Q141488","display_name":"Graph","level":2,"score":0.0855858}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/3dv.2014.108","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":32,"referenced_works":["https://openalex.org/W2023808821","https://openalex.org/W2029524207","https://openalex.org/W2030536784","https://openalex.org/W2031248101","https://openalex.org/W2050159143","https://openalex.org/W2050204708","https://openalex.org/W2057175746","https://openalex.org/W2095844239","https://openalex.org/W2099789128","https://openalex.org/W2105644991","https://openalex.org/W2105842272","https://openalex.org/W2106210044","https://openalex.org/W2106629076","https://openalex.org/W2106723645","https://openalex.org/W2114111978","https://openalex.org/W2116877738","https://openalex.org/W2119821739","https://openalex.org/W2120419212","https://openalex.org/W2132303710","https://openalex.org/W2133605096","https://openalex.org/W2147880316","https://openalex.org/W2151103935","https://openalex.org/W2158122241","https://openalex.org/W2159680539","https://openalex.org/W2164918853","https://openalex.org/W2165308258","https://openalex.org/W2166987050","https://openalex.org/W2937970997","https://openalex.org/W4234143236","https://openalex.org/W4236508656","https://openalex.org/W4239510810","https://openalex.org/W4249805707"],"related_works":["https://openalex.org/W4311804456","https://openalex.org/W2735662278","https://openalex.org/W2623658258","https://openalex.org/W2382615723","https://openalex.org/W2366350639","https://openalex.org/W2165912799","https://openalex.org/W2128904762","https://openalex.org/W2075574617","https://openalex.org/W1987484445","https://openalex.org/W1557607869"],"abstract_inverted_index":{"For":[0],"large":[1],"collections":[2],"of":[3,13,119],"3D":[4,29,159],"models,":[5],"the":[6,66,116,126],"ability":[7],"to":[8,17,44,54,89,124],"detect":[9,55],"and":[10,20,152],"localize":[11],"parts":[12,57,120],"interest":[14],"is":[15,42,108],"necessary":[16],"provide":[18],"search":[19],"visualization":[21,107],"enhancements":[22],"beyond":[23],"simple":[24],"high-level":[25],"categorization.":[26],"While":[27],"current":[28],"labeling":[30],"approaches":[31],"rely":[32],"on":[33,114,121,156],"learning":[34,53],"from":[35,58],"fully":[36],"labeled":[37,60,77],"meshes,":[38],"such":[39],"training":[40],"data":[41],"difficult":[43],"acquire":[45],"at":[46],"scale.":[47],"In":[48],"this":[49],"work":[50],"we":[51,63,73,86,137],"explore":[52],"object":[56,71,132],"sparsely":[59],"data,":[61],"i.e.":[62],"operate":[64],"under":[65],"assumption":[67],"that":[68,141],"for":[69,95,104,135],"any":[70],"part":[72,145],"have":[74],"only":[75],"one":[76],"vertex":[78,94],"rather":[79],"than":[80],"a":[81,91,122,148],"full":[82],"region":[83],"segmentation.":[84],"Similarly,":[85],"also":[87],"learn":[88],"output":[90],"single":[92],"representative":[93],"each":[96],"detected":[97],"part.":[98],"Such":[99],"localized":[100],"predictions":[101],"are":[102],"useful":[103],"applications":[105],"where":[106],"important.":[109],"Our":[110],"approach":[111],"relies":[112],"heavily":[113],"exploiting":[115],"spatial":[117],"configuration":[118],"model":[123],"drive":[125],"detection.":[127],"Inspired":[128],"by":[129],"structured":[130,149],"multi-class":[131],"detection":[133],"models":[134],"images,":[136],"develop":[138],"an":[139],"algorithm":[140],"combines":[142],"independently":[143],"trained":[144],"classifiers":[146],"with":[147],"SVM":[150],"model,":[151],"show":[153],"promising":[154],"results":[155],"real-world":[157],"textured":[158],"data.":[160]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W1976204400","counts_by_year":[{"year":2022,"cited_by_count":1},{"year":2021,"cited_by_count":1},{"year":2020,"cited_by_count":3},{"year":2019,"cited_by_count":2},{"year":2018,"cited_by_count":1},{"year":2017,"cited_by_count":4},{"year":2016,"cited_by_count":2},{"year":2015,"cited_by_count":1}],"updated_date":"2025-03-23T17:54:15.450677","created_date":"2016-06-24"}