{"id":"https://openalex.org/W2024703724","doi":"https://doi.org/10.1109/10.951522","title":"Bayesian approach to segmentation of statistical parametric maps","display_name":"Bayesian approach to segmentation of statistical parametric maps","publication_year":2001,"publication_date":"2001-01-01","ids":{"openalex":"https://openalex.org/W2024703724","doi":"https://doi.org/10.1109/10.951522","mag":"2024703724","pmid":"https://pubmed.ncbi.nlm.nih.gov/11585043"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/10.951522","pdf_url":null,"source":{"id":"https://openalex.org/S5240358","display_name":"IEEE Transactions on Biomedical Engineering","issn_l":"0018-9294","issn":["0018-9294","1558-2531"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310319808","host_organization_name":"Institute of Electrical and Electronics Engineers","host_organization_lineage":["https://openalex.org/P4310319808"],"host_organization_lineage_names":["Institute of Electrical and Electronics Engineers"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"journal-article","indexed_in":["crossref","pubmed"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5026076885","display_name":"Jagath C. Rajapakse","orcid":"https://orcid.org/0000-0001-7944-1658"},"institutions":[{"id":"https://openalex.org/I172675005","display_name":"Nanyang Technological University","ror":"https://ror.org/02e7b5302","country_code":"SG","type":"education","lineage":["https://openalex.org/I172675005"]}],"countries":["SG"],"is_corresponding":false,"raw_author_name":"J.C. Rajapakse","raw_affiliation_strings":["School of Computer Engineering, Nanyang Technological University, Singapore, Singapore"],"affiliations":[{"raw_affiliation_string":"School of Computer Engineering, Nanyang Technological University, Singapore, Singapore","institution_ids":["https://openalex.org/I172675005"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5054108014","display_name":"Jayasanka Piyaratna","orcid":null},"institutions":[{"id":"https://openalex.org/I172675005","display_name":"Nanyang Technological University","ror":"https://ror.org/02e7b5302","country_code":"SG","type":"education","lineage":["https://openalex.org/I172675005"]}],"countries":["SG"],"is_corresponding":false,"raw_author_name":"J. Piyaratna","raw_affiliation_strings":["School of Computer Engineering, Nanyang Technological University, Singapore, Singapore"],"affiliations":[{"raw_affiliation_string":"School of Computer Engineering, Nanyang Technological University, Singapore, Singapore","institution_ids":["https://openalex.org/I172675005"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":4.985,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":54,"citation_normalized_percentile":{"value":0.926673,"is_in_top_1_percent":false,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":92,"max":93},"biblio":{"volume":"48","issue":"10","first_page":"1186","last_page":"1194"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10052","display_name":"Medical Image Segmentation Techniques","score":0.9959,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10052","display_name":"Medical Image Segmentation Techniques","score":0.9959,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10522","display_name":"Medical Imaging Techniques and Applications","score":0.9909,"subfield":{"id":"https://openalex.org/subfields/2741","display_name":"Radiology, Nuclear Medicine and Imaging"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}},{"id":"https://openalex.org/T10378","display_name":"Advanced MRI Techniques and Applications","score":0.9787,"subfield":{"id":"https://openalex.org/subfields/2741","display_name":"Radiology, Nuclear Medicine and Imaging"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/statistical-parametric-mapping","display_name":"Statistical parametric mapping","score":0.66496813},{"id":"https://openalex.org/keywords/markov-random-field","display_name":"Markov random field","score":0.64457536}],"concepts":[{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.7203913},{"id":"https://openalex.org/C89600930","wikidata":"https://www.wikidata.org/wiki/Q1423946","display_name":"Segmentation","level":2,"score":0.69859433},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.6876538},{"id":"https://openalex.org/C39313694","wikidata":"https://www.wikidata.org/wiki/Q2940624","display_name":"Statistical parametric mapping","level":3,"score":0.66496813},{"id":"https://openalex.org/C2778045648","wikidata":"https://www.wikidata.org/wiki/Q176827","display_name":"Markov random field","level":4,"score":0.64457536},{"id":"https://openalex.org/C54170458","wikidata":"https://www.wikidata.org/wiki/Q663554","display_name":"Voxel","level":2,"score":0.6164013},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.6019087},{"id":"https://openalex.org/C117251300","wikidata":"https://www.wikidata.org/wiki/Q1849855","display_name":"Parametric statistics","level":2,"score":0.55617875},{"id":"https://openalex.org/C107673813","wikidata":"https://www.wikidata.org/wiki/Q812534","display_name":"Bayesian probability","level":2,"score":0.5554887},{"id":"https://openalex.org/C124504099","wikidata":"https://www.wikidata.org/wiki/Q56933","display_name":"Image segmentation","level":3,"score":0.50754845},{"id":"https://openalex.org/C9810830","wikidata":"https://www.wikidata.org/wiki/Q635384","display_name":"Maximum a posteriori estimation","level":3,"score":0.49024945},{"id":"https://openalex.org/C191178318","wikidata":"https://www.wikidata.org/wiki/Q2256906","display_name":"Thresholding","level":3,"score":0.47501382},{"id":"https://openalex.org/C126980161","wikidata":"https://www.wikidata.org/wiki/Q863783","display_name":"Simulated annealing","level":2,"score":0.43549657},{"id":"https://openalex.org/C2779343474","wikidata":"https://www.wikidata.org/wiki/Q3109175","display_name":"Context (archaeology)","level":2,"score":0.41899267},{"id":"https://openalex.org/C31972630","wikidata":"https://www.wikidata.org/wiki/Q844240","display_name":"Computer vision","level":1,"score":0.34362713},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.21449775},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.21364862},{"id":"https://openalex.org/C115961682","wikidata":"https://www.wikidata.org/wiki/Q860623","display_name":"Image (mathematics)","level":2,"score":0.16700071},{"id":"https://openalex.org/C71924100","wikidata":"https://www.wikidata.org/wiki/Q11190","display_name":"Medicine","level":0,"score":0.0},{"id":"https://openalex.org/C49781872","wikidata":"https://www.wikidata.org/wiki/Q1045555","display_name":"Maximum likelihood","level":2,"score":0.0},{"id":"https://openalex.org/C151730666","wikidata":"https://www.wikidata.org/wiki/Q7205","display_name":"Paleontology","level":1,"score":0.0},{"id":"https://openalex.org/C105795698","wikidata":"https://www.wikidata.org/wiki/Q12483","display_name":"Statistics","level":1,"score":0.0},{"id":"https://openalex.org/C86803240","wikidata":"https://www.wikidata.org/wiki/Q420","display_name":"Biology","level":0,"score":0.0},{"id":"https://openalex.org/C143409427","wikidata":"https://www.wikidata.org/wiki/Q161238","display_name":"Magnetic resonance imaging","level":2,"score":0.0},{"id":"https://openalex.org/C126838900","wikidata":"https://www.wikidata.org/wiki/Q77604","display_name":"Radiology","level":1,"score":0.0}],"mesh":[{"descriptor_ui":"D001499","descriptor_name":"Bayes Theorem","qualifier_ui":"","qualifier_name":null,"is_major_topic":true},{"descriptor_ui":"D001931","descriptor_name":"Brain Mapping","qualifier_ui":"","qualifier_name":null,"is_major_topic":true},{"descriptor_ui":"D007091","descriptor_name":"Image Processing, Computer-Assisted","qualifier_ui":"","qualifier_name":null,"is_major_topic":true},{"descriptor_ui":"D008279","descriptor_name":"Magnetic Resonance Imaging","qualifier_ui":"","qualifier_name":null,"is_major_topic":true},{"descriptor_ui":"D000465","descriptor_name":"Algorithms","qualifier_ui":"","qualifier_name":null,"is_major_topic":false},{"descriptor_ui":"D006801","descriptor_name":"Humans","qualifier_ui":"","qualifier_name":null,"is_major_topic":false},{"descriptor_ui":"D008390","descriptor_name":"Markov Chains","qualifier_ui":"","qualifier_name":null,"is_major_topic":false}],"locations_count":2,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/10.951522","pdf_url":null,"source":{"id":"https://openalex.org/S5240358","display_name":"IEEE Transactions on Biomedical Engineering","issn_l":"0018-9294","issn":["0018-9294","1558-2531"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310319808","host_organization_name":"Institute of Electrical and Electronics Engineers","host_organization_lineage":["https://openalex.org/P4310319808"],"host_organization_lineage_names":["Institute of Electrical and Electronics Engineers"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://pubmed.ncbi.nlm.nih.gov/11585043","pdf_url":null,"source":{"id":"https://openalex.org/S4306525036","display_name":"PubMed","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I1299303238","host_organization_name":"National Institutes of Health","host_organization_lineage":["https://openalex.org/I1299303238"],"host_organization_lineage_names":["National Institutes of Health"],"type":"repository"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":41,"referenced_works":["https://openalex.org/W1506281249","https://openalex.org/W1554532831","https://openalex.org/W1554544485","https://openalex.org/W1804395613","https://openalex.org/W1978641348","https://openalex.org/W1990005524","https://openalex.org/W2002660165","https://openalex.org/W2014875176","https://openalex.org/W2020999234","https://openalex.org/W2024060531","https://openalex.org/W2025283285","https://openalex.org/W2048050362","https://openalex.org/W2048209332","https://openalex.org/W2049489255","https://openalex.org/W2051691068","https://openalex.org/W2051809205","https://openalex.org/W2056760934","https://openalex.org/W2059982399","https://openalex.org/W2077056138","https://openalex.org/W2077654529","https://openalex.org/W2088774650","https://openalex.org/W2093366270","https://openalex.org/W2104494306","https://openalex.org/W2111609296","https://openalex.org/W2114220616","https://openalex.org/W2116649573","https://openalex.org/W2118587067","https://openalex.org/W2122020906","https://openalex.org/W2137813469","https://openalex.org/W2143360274","https://openalex.org/W2159965356","https://openalex.org/W2169428430","https://openalex.org/W2171643070","https://openalex.org/W2171652727","https://openalex.org/W2579190672","https://openalex.org/W2702410894","https://openalex.org/W2799061466","https://openalex.org/W2983836991","https://openalex.org/W4244494905","https://openalex.org/W4250725391","https://openalex.org/W4254011946"],"related_works":["https://openalex.org/W2804375118","https://openalex.org/W2180905035","https://openalex.org/W2160831725","https://openalex.org/W2132110568","https://openalex.org/W2112506753","https://openalex.org/W2097090565","https://openalex.org/W2029809897","https://openalex.org/W2008444830","https://openalex.org/W1522441193","https://openalex.org/W1495937069"],"abstract_inverted_index":{"A":[0],"contextual":[1],"segmentation":[2,68,148],"technique":[3,144],"to":[4,38,56,150],"detect":[5],"brain":[6,10,43,139],"activation":[7,134],"from":[8],"functional":[9,110,138],"images":[11,112],"is":[12,36,71,78],"presented":[13,105],"in":[14,114,137],"the":[15,58,94,98,133,142,151,155],"Bayesian":[16],"framework.":[17],"Unlike":[18],"earlier":[19],"similar":[20],"approaches":[21,103],"[Holmes":[22],"and":[23,26,45,81,91,97,109,117,141,154],"Ford":[24],"(1993)":[25],"Descombes":[27],"et":[28],"al.":[29],"(1998)],":[30],"a":[31,60,74,129,146],"Markov":[32],"random":[33],"field":[34],"(MRF)":[35],"used":[37,55],"represent":[39],"configurations":[40],"of":[41,64,83,132],"activated":[42],"voxels,":[44],"likelihoods":[46],"given":[47],"by":[48],"statistical":[49,99],"parametric":[50,100],"maps":[51],"(SPM's)":[52],"are":[53,104],"directly":[54],"find":[57],"maximum":[59],"posteriori":[61],"(MAP)":[62],"estimation":[63],"segmentation.":[65],"The":[66,122],"iterative":[67],"algorithm,":[69],"which":[70],"based":[72],"on":[73],"simulated":[75],"annealing":[76],"scheme,":[77],"fully":[79],"data-driven":[80],"capable":[82],"analyzing":[84],"experiments":[85,123],"involving":[86],"multiple-input":[87],"stimuli.":[88],"Simulation":[89],"results":[90],"comparisons":[92],"with":[93,106],"simple":[95],"thresholding":[96],"mapping":[101],"(SPM)":[102],"synthetic":[107],"images,":[108,140],"MR":[111],"acquired":[113],"memory":[115,120],"retrieval":[116],"event-related":[118],"working":[119],"tasks.":[121],"show":[124],"that":[125],"an":[126],"MRF":[127],"Is":[128],"valid":[130],"representation":[131],"patterns":[135],"obtained":[136],"present":[143],"renders":[145],"superior":[147],"scheme":[149],"context-free":[152],"approach":[153],"SPM":[156],"approach.":[157]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2024703724","counts_by_year":[{"year":2024,"cited_by_count":1},{"year":2022,"cited_by_count":1},{"year":2021,"cited_by_count":1},{"year":2020,"cited_by_count":2},{"year":2016,"cited_by_count":1},{"year":2015,"cited_by_count":1},{"year":2014,"cited_by_count":2},{"year":2013,"cited_by_count":1},{"year":2012,"cited_by_count":1}],"updated_date":"2024-12-17T14:43:27.179283","created_date":"2016-06-24"}