{"id":"https://openalex.org/W2100702845","doi":"https://doi.org/10.1109/10.909642","title":"Wavelet transform filtering and nonlinear anisotropic diffusion assessed for signal reconstruction performance on multidimensional biomedical data","display_name":"Wavelet transform filtering and nonlinear anisotropic diffusion assessed for signal reconstruction performance on multidimensional biomedical data","publication_year":2001,"publication_date":"2001-01-01","ids":{"openalex":"https://openalex.org/W2100702845","doi":"https://doi.org/10.1109/10.909642","mag":"2100702845","pmid":"https://pubmed.ncbi.nlm.nih.gov/11296877"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/10.909642","pdf_url":null,"source":{"id":"https://openalex.org/S5240358","display_name":"IEEE Transactions on Biomedical Engineering","issn_l":"0018-9294","issn":["0018-9294","1558-2531"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310319808","host_organization_name":"Institute of Electrical and Electronics Engineers","host_organization_lineage":["https://openalex.org/P4310319808"],"host_organization_lineage_names":["Institute of Electrical and Electronics Engineers"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"journal-article","indexed_in":["crossref","pubmed"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5088606060","display_name":"Achilleas S. Frangakis","orcid":"https://orcid.org/0000-0002-8067-6611"},"institutions":[{"id":"https://openalex.org/I4210150093","display_name":"Max Planck Institute of Biochemistry","ror":"https://ror.org/04py35477","country_code":"DE","type":"facility","lineage":["https://openalex.org/I149899117","https://openalex.org/I4210150093"]}],"countries":["DE"],"is_corresponding":false,"raw_author_name":"A.S. Frangakis","raw_affiliation_strings":["Max Planck Institut f\u00fcr Biochemie, Martinsried, Germany"],"affiliations":[{"raw_affiliation_string":"Max Planck Institut f\u00fcr Biochemie, Martinsried, Germany","institution_ids":["https://openalex.org/I4210150093"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5072595009","display_name":"A. Stoschek","orcid":null},"institutions":[{"id":"https://openalex.org/I97018004","display_name":"Stanford University","ror":"https://ror.org/00f54p054","country_code":"US","type":"education","lineage":["https://openalex.org/I97018004"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"A. Stoschek","raw_affiliation_strings":["Department of Neurobiology, University of Stanford, Stanford, CA, USA"],"affiliations":[{"raw_affiliation_string":"Department of Neurobiology, University of Stanford, Stanford, CA, USA","institution_ids":["https://openalex.org/I97018004"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5001042638","display_name":"R. Hegerl","orcid":null},"institutions":[{"id":"https://openalex.org/I4210150093","display_name":"Max Planck Institute of Biochemistry","ror":"https://ror.org/04py35477","country_code":"DE","type":"facility","lineage":["https://openalex.org/I149899117","https://openalex.org/I4210150093"]}],"countries":["DE"],"is_corresponding":false,"raw_author_name":"R. Hegerl","raw_affiliation_strings":["Max Planck Institut f\u00fcr Biochemie, Martinsried, Germany"],"affiliations":[{"raw_affiliation_string":"Max Planck Institut f\u00fcr Biochemie, Martinsried, Germany","institution_ids":["https://openalex.org/I4210150093"]}]}],"institution_assertions":[],"countries_distinct_count":2,"institutions_distinct_count":2,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":2.991,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":57,"citation_normalized_percentile":{"value":0.936858,"is_in_top_1_percent":false,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":92,"max":93},"biblio":{"volume":"48","issue":"2","first_page":"213","last_page":"222"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10688","display_name":"Image and Signal Denoising Methods","score":0.9984,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10688","display_name":"Image and Signal Denoising Methods","score":0.9984,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10052","display_name":"Medical Image Segmentation Techniques","score":0.9948,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10522","display_name":"Medical Imaging Techniques and Applications","score":0.9793,"subfield":{"id":"https://openalex.org/subfields/2741","display_name":"Radiology, Nuclear Medicine and Imaging"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/signal","display_name":"SIGNAL (programming language)","score":0.50983375},{"id":"https://openalex.org/keywords/signal-reconstruction","display_name":"Signal reconstruction","score":0.48411596}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.6720354},{"id":"https://openalex.org/C47432892","wikidata":"https://www.wikidata.org/wiki/Q831390","display_name":"Wavelet","level":2,"score":0.6642332},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.6049882},{"id":"https://openalex.org/C141379421","wikidata":"https://www.wikidata.org/wiki/Q6094427","display_name":"Iterative reconstruction","level":2,"score":0.5895195},{"id":"https://openalex.org/C196216189","wikidata":"https://www.wikidata.org/wiki/Q2867","display_name":"Wavelet transform","level":3,"score":0.53440845},{"id":"https://openalex.org/C203504353","wikidata":"https://www.wikidata.org/wiki/Q4765461","display_name":"Anisotropic diffusion","level":3,"score":0.51527095},{"id":"https://openalex.org/C99498987","wikidata":"https://www.wikidata.org/wiki/Q2210247","display_name":"Noise (video)","level":3,"score":0.5142481},{"id":"https://openalex.org/C163294075","wikidata":"https://www.wikidata.org/wiki/Q581861","display_name":"Noise reduction","level":2,"score":0.51223344},{"id":"https://openalex.org/C2779843651","wikidata":"https://www.wikidata.org/wiki/Q7390335","display_name":"SIGNAL (programming language)","level":2,"score":0.50983375},{"id":"https://openalex.org/C70958404","wikidata":"https://www.wikidata.org/wiki/Q7512728","display_name":"Signal reconstruction","level":4,"score":0.48411596},{"id":"https://openalex.org/C104267543","wikidata":"https://www.wikidata.org/wiki/Q208163","display_name":"Signal processing","level":3,"score":0.48215765},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.4750685},{"id":"https://openalex.org/C31601959","wikidata":"https://www.wikidata.org/wiki/Q931309","display_name":"Medical imaging","level":2,"score":0.47102055},{"id":"https://openalex.org/C31972630","wikidata":"https://www.wikidata.org/wiki/Q844240","display_name":"Computer vision","level":1,"score":0.40218574},{"id":"https://openalex.org/C84462506","wikidata":"https://www.wikidata.org/wiki/Q173142","display_name":"Digital signal processing","level":2,"score":0.17007226},{"id":"https://openalex.org/C115961682","wikidata":"https://www.wikidata.org/wiki/Q860623","display_name":"Image (mathematics)","level":2,"score":0.13885778},{"id":"https://openalex.org/C9390403","wikidata":"https://www.wikidata.org/wiki/Q3966","display_name":"Computer hardware","level":1,"score":0.0},{"id":"https://openalex.org/C199360897","wikidata":"https://www.wikidata.org/wiki/Q9143","display_name":"Programming language","level":1,"score":0.0}],"mesh":[{"descriptor_ui":"D011856","descriptor_name":"Radiographic Image Enhancement","qualifier_ui":"Q000379","qualifier_name":"methods","is_major_topic":true},{"descriptor_ui":"D014057","descriptor_name":"Tomography, X-Ray Computed","qualifier_ui":"","qualifier_name":null,"is_major_topic":true},{"descriptor_ui":"D016880","descriptor_name":"Anisotropy","qualifier_ui":"","qualifier_name":null,"is_major_topic":false},{"descriptor_ui":"D017348","descriptor_name":"Microscopy, Electron, Scanning Transmission","qualifier_ui":"","qualifier_name":null,"is_major_topic":false},{"descriptor_ui":"D017711","descriptor_name":"Nonlinear Dynamics","qualifier_ui":"","qualifier_name":null,"is_major_topic":false},{"descriptor_ui":"D011856","descriptor_name":"Radiographic Image Enhancement","qualifier_ui":"","qualifier_name":null,"is_major_topic":false}],"locations_count":2,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/10.909642","pdf_url":null,"source":{"id":"https://openalex.org/S5240358","display_name":"IEEE Transactions on Biomedical Engineering","issn_l":"0018-9294","issn":["0018-9294","1558-2531"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310319808","host_organization_name":"Institute of Electrical and Electronics Engineers","host_organization_lineage":["https://openalex.org/P4310319808"],"host_organization_lineage_names":["Institute of Electrical and Electronics Engineers"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://pubmed.ncbi.nlm.nih.gov/11296877","pdf_url":null,"source":{"id":"https://openalex.org/S4306525036","display_name":"PubMed","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I1299303238","host_organization_name":"National Institutes of Health","host_organization_lineage":["https://openalex.org/I1299303238"],"host_organization_lineage_names":["National Institutes of Health"],"type":"repository"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":40,"referenced_works":["https://openalex.org/W127809959","https://openalex.org/W1480546554","https://openalex.org/W1534757579","https://openalex.org/W1605245492","https://openalex.org/W1967207159","https://openalex.org/W1986931325","https://openalex.org/W1994628498","https://openalex.org/W2001828266","https://openalex.org/W2010839989","https://openalex.org/W2022905067","https://openalex.org/W2027791781","https://openalex.org/W2037744310","https://openalex.org/W2044500085","https://openalex.org/W2045696637","https://openalex.org/W2060402266","https://openalex.org/W2062024414","https://openalex.org/W2065989492","https://openalex.org/W2067159498","https://openalex.org/W2078204800","https://openalex.org/W2080314662","https://openalex.org/W2093728332","https://openalex.org/W2106603723","https://openalex.org/W2107790757","https://openalex.org/W2109863423","https://openalex.org/W2113834179","https://openalex.org/W2116988482","https://openalex.org/W2120959665","https://openalex.org/W2132984323","https://openalex.org/W2133155955","https://openalex.org/W2146842127","https://openalex.org/W2146846625","https://openalex.org/W2148734996","https://openalex.org/W2150134853","https://openalex.org/W2151693816","https://openalex.org/W2160341948","https://openalex.org/W2162342650","https://openalex.org/W2409524874","https://openalex.org/W4250507776","https://openalex.org/W4255272544","https://openalex.org/W59771946"],"related_works":["https://openalex.org/W2475096862","https://openalex.org/W2379232376","https://openalex.org/W2373576987","https://openalex.org/W2365492952","https://openalex.org/W2161177511","https://openalex.org/W2159155702","https://openalex.org/W2149857113","https://openalex.org/W2007919187","https://openalex.org/W1992788508","https://openalex.org/W1486519939"],"abstract_inverted_index":{"Computer":[0],"tomography":[1,30],"(CT)":[2],"techniques":[3,132,154],"are":[4],"the":[5,41,45,73,91,114,145,148,166],"most":[6],"widely":[7],"applicable":[8],"noninvasive":[9],"methods":[10,76,168],"for":[11,23,32,77,134,147],"obtaining":[12],"two-":[13],"and":[14,35,47,50,86,104,121,130,152,176],"three-dimensional":[15],"insights":[16,53],"into":[17,54],"biological":[18],"objects.":[19,59],"They":[20,108],"comprise":[21],"CT":[22],"medical":[24],"applications,":[25],"as":[26,28,82],"well":[27],"electron":[29],"used":[31],"investigating":[33],"macromolecular":[34],"cellular":[36],"specimens.":[37],"Recent":[38],"advances":[39],"in":[40,169],"recording":[42],"schemes":[43],"improve":[44],"speed":[46],"resolution":[48],"frontiers":[49],"provide":[51],"new":[52],"structural":[55],"organizations":[56],"of":[57,75,94,128,164],"different":[58,172],"However,":[60],"many":[61],"data":[62,79,120],"sets":[63],"suffer":[64],"from":[65],"a":[66,135],"poor":[67],"signal-to-noise":[68],"ratio,":[69],"which":[70],"severely":[71],"hinders":[72],"application":[74],"automated":[78],"analysis,":[80],"such":[81],"feature":[83],"extraction,":[84],"segmentation,":[85],"visualization.":[87],"The":[88,124,142],"authors":[89,143],"propose":[90],"multidimensional":[92,126],"implementation":[93],"two":[95,170],"powerful":[96],"signal":[97,115,160],"reconstruction":[98,116,161],"techniques,":[99],"namely":[100],"invariant":[101],"wavelet":[102,129,151],"filtering":[103],"nonlinear":[105],"anisotropic":[106],"diffusion.":[107],"establish":[109],"quantitative":[110],"measures":[111],"to":[112,157],"assess":[113],"performance":[117,137],"on":[118],"synthetic":[119],"biomedical":[122],"images.":[123],"appropriate":[125],"implementations":[127],"diffusion":[131,153],"allow":[133],"superior":[136],"over":[138],"conventional":[139],"noise-reduction":[140],"methods.":[141],"derive":[144],"conditions":[146],"choice":[149],"between":[150],"with":[155],"respect":[156],"an":[158],"optimal":[159],"performance.":[162],"Results":[163],"applying":[165],"proposed":[167],"very":[171],"imaging":[173],"domains-molecular":[174],"biology":[175],"clinical":[177],"research-are":[178],"provided.":[179]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2100702845","counts_by_year":[{"year":2024,"cited_by_count":2},{"year":2021,"cited_by_count":1},{"year":2019,"cited_by_count":1},{"year":2017,"cited_by_count":2},{"year":2016,"cited_by_count":2},{"year":2015,"cited_by_count":1},{"year":2014,"cited_by_count":2},{"year":2012,"cited_by_count":7}],"updated_date":"2024-12-14T00:36:18.219950","created_date":"2016-06-24"}