{"id":"https://openalex.org/W2982310095","doi":"https://doi.org/10.1108/k-10-2018-0520","title":"Patient visit forecasting in an emergency department using a deep neural network approach","display_name":"Patient visit forecasting in an emergency department using a deep neural network approach","publication_year":2019,"publication_date":"2019-10-16","ids":{"openalex":"https://openalex.org/W2982310095","doi":"https://doi.org/10.1108/k-10-2018-0520","mag":"2982310095"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1108/k-10-2018-0520","pdf_url":null,"source":{"id":"https://openalex.org/S168682784","display_name":"Kybernetes","issn_l":"0368-492X","issn":["0368-492X","1758-7883"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310319811","host_organization_name":"Emerald Publishing Limited","host_organization_lineage":["https://openalex.org/P4310319811"],"host_organization_lineage_names":["Emerald Publishing Limited"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"journal-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5101826981","display_name":"Milad Yousefi","orcid":"https://orcid.org/0000-0003-1416-4279"},"institutions":[{"id":"https://openalex.org/I130442723","display_name":"Universidade Federal do Rio Grande do Sul","ror":"https://ror.org/041yk2d64","country_code":"BR","type":"education","lineage":["https://openalex.org/I130442723"]}],"countries":["BR"],"is_corresponding":false,"raw_author_name":"Milad Yousefi","raw_affiliation_strings":["Department of Industrial and Transportation Engineering, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil"],"affiliations":[{"raw_affiliation_string":"Department of Industrial and Transportation Engineering, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil","institution_ids":["https://openalex.org/I130442723"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5079588710","display_name":"Moslem Yousefi","orcid":"https://orcid.org/0000-0003-0435-5805"},"institutions":[{"id":"https://openalex.org/I1306291479","display_name":"Islamic Azad University Roudehen Branch","ror":"https://ror.org/00dzmf738","country_code":"IR","type":"education","lineage":["https://openalex.org/I110525433","https://openalex.org/I1306291479"]}],"countries":["IR"],"is_corresponding":false,"raw_author_name":"Moslem Yousefi","raw_affiliation_strings":["Department of Mechanical Engineering, Islamic Azad University, Roudehen, Iran"],"affiliations":[{"raw_affiliation_string":"Department of Mechanical Engineering, Islamic Azad University, Roudehen, Iran","institution_ids":["https://openalex.org/I1306291479"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5035877428","display_name":"Masood Fathi","orcid":"https://orcid.org/0000-0001-5530-3517"},"institutions":[{"id":"https://openalex.org/I205158640","display_name":"University of Sk\u00f6vde","ror":"https://ror.org/051mrsz47","country_code":"SE","type":"education","lineage":["https://openalex.org/I205158640"]}],"countries":["SE"],"is_corresponding":false,"raw_author_name":"Masood Fathi","raw_affiliation_strings":["Department of Production and Automation Engineering, University of Sk\u00f6vde, Sk\u00f6vde, Sweden"],"affiliations":[{"raw_affiliation_string":"Department of Production and Automation Engineering, University of Sk\u00f6vde, Sk\u00f6vde, Sweden","institution_ids":["https://openalex.org/I205158640"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5071396234","display_name":"Fl\u00e1vio Sanson Fogliatto","orcid":"https://orcid.org/0000-0002-0323-8060"},"institutions":[{"id":"https://openalex.org/I130442723","display_name":"Universidade Federal do Rio Grande do Sul","ror":"https://ror.org/041yk2d64","country_code":"BR","type":"education","lineage":["https://openalex.org/I130442723"]}],"countries":["BR"],"is_corresponding":false,"raw_author_name":"Flavio S. Fogliatto","raw_affiliation_strings":["Department of Industrial and Transportation Engineering, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil"],"affiliations":[{"raw_affiliation_string":"Department of Industrial and Transportation Engineering, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil","institution_ids":["https://openalex.org/I130442723"]}]}],"institution_assertions":[],"countries_distinct_count":3,"institutions_distinct_count":3,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":3.997,"has_fulltext":false,"cited_by_count":29,"citation_normalized_percentile":{"value":0.999857,"is_in_top_1_percent":true,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":94,"max":95},"biblio":{"volume":"49","issue":"9","first_page":"2335","last_page":"2348"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11095","display_name":"Emergency and Acute Care Studies","score":0.9895,"subfield":{"id":"https://openalex.org/subfields/2711","display_name":"Emergency Medicine"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}},"topics":[{"id":"https://openalex.org/T11095","display_name":"Emergency and Acute Care Studies","score":0.9895,"subfield":{"id":"https://openalex.org/subfields/2711","display_name":"Emergency Medicine"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}},{"id":"https://openalex.org/T11918","display_name":"Forecasting Techniques and Applications","score":0.9533,"subfield":{"id":"https://openalex.org/subfields/1803","display_name":"Management Science and Operations Research"},"field":{"id":"https://openalex.org/fields/18","display_name":"Decision Sciences"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}},{"id":"https://openalex.org/T14374","display_name":"Statistical Methods in Epidemiology","score":0.9037,"subfield":{"id":"https://openalex.org/subfields/2613","display_name":"Statistics and Probability"},"field":{"id":"https://openalex.org/fields/26","display_name":"Mathematics"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[],"concepts":[{"id":"https://openalex.org/C24338571","wikidata":"https://www.wikidata.org/wiki/Q2566298","display_name":"Autoregressive integrated moving average","level":3,"score":0.89946604},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.65771794},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.63534087},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.5843886},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.53642434},{"id":"https://openalex.org/C12267149","wikidata":"https://www.wikidata.org/wiki/Q282453","display_name":"Support vector machine","level":2,"score":0.4771592},{"id":"https://openalex.org/C48921125","wikidata":"https://www.wikidata.org/wiki/Q10861030","display_name":"Linear regression","level":2,"score":0.4487136},{"id":"https://openalex.org/C159877910","wikidata":"https://www.wikidata.org/wiki/Q2202883","display_name":"Autoregressive model","level":2,"score":0.44581226},{"id":"https://openalex.org/C152877465","wikidata":"https://www.wikidata.org/wiki/Q208042","display_name":"Regression analysis","level":2,"score":0.42795157},{"id":"https://openalex.org/C42475967","wikidata":"https://www.wikidata.org/wiki/Q194292","display_name":"Operations research","level":1,"score":0.35704237},{"id":"https://openalex.org/C151406439","wikidata":"https://www.wikidata.org/wiki/Q186588","display_name":"Time series","level":2,"score":0.3436157},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.33379412},{"id":"https://openalex.org/C149782125","wikidata":"https://www.wikidata.org/wiki/Q160039","display_name":"Econometrics","level":1,"score":0.2970528},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.16828206}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1108/k-10-2018-0520","pdf_url":null,"source":{"id":"https://openalex.org/S168682784","display_name":"Kybernetes","issn_l":"0368-492X","issn":["0368-492X","1758-7883"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310319811","host_organization_name":"Emerald Publishing Limited","host_organization_lineage":["https://openalex.org/P4310319811"],"host_organization_lineage_names":["Emerald Publishing Limited"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"id":"https://metadata.un.org/sdg/4","score":0.48,"display_name":"Quality education"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":24,"referenced_works":["https://openalex.org/W1518025163","https://openalex.org/W1656598679","https://openalex.org/W1968193277","https://openalex.org/W1970414061","https://openalex.org/W1973518279","https://openalex.org/W2023339493","https://openalex.org/W2037338427","https://openalex.org/W2038804786","https://openalex.org/W2060557082","https://openalex.org/W2064675550","https://openalex.org/W2098235618","https://openalex.org/W2106600183","https://openalex.org/W2107878631","https://openalex.org/W2124191470","https://openalex.org/W2125425767","https://openalex.org/W2137436257","https://openalex.org/W2165599108","https://openalex.org/W2395623588","https://openalex.org/W2524983454","https://openalex.org/W2529690187","https://openalex.org/W2588061101","https://openalex.org/W2732350692","https://openalex.org/W2765154765","https://openalex.org/W2792159426"],"related_works":["https://openalex.org/W4386362517","https://openalex.org/W4313123484","https://openalex.org/W4312561791","https://openalex.org/W4312309719","https://openalex.org/W3175321409","https://openalex.org/W3115491726","https://openalex.org/W2974356760","https://openalex.org/W2389894046","https://openalex.org/W2215717369","https://openalex.org/W2146461990"],"abstract_inverted_index":{"Purpose":[0],"This":[1],"study":[2,57,141,197],"aims":[3],"to":[4,17,30,41,55,67,146,168,198],"investigate":[5],"the":[6,38,43,52,56,90,99,107,151,163,166,169,188,191,195,200,211],"factors":[7,40,54],"affecting":[8],"daily":[9],"demand":[10,44,180],"in":[11,22,45,106,142,154,177,216],"an":[12],"emergency":[13],"department":[14],"(ED)":[15],"and":[16,129,132],"provide":[18],"a":[19,23,61,69,143,159,208],"forecasting":[20,181],"tool":[21],"public":[24],"hospital":[25],"for":[26,80,206],"horizons":[27],"of":[28,92,162,165,190,202,210,213],"up":[29],"seven":[31],"days.":[32],"Design/methodology/approach":[33],"In":[34],"this":[35,82,140,193],"study,":[36],"first,":[37],"important":[39],"influence":[42],"EDs":[46,156],"were":[47],"extracted":[48],"from":[49],"literature":[50,108],"then":[51],"relevant":[53],"are":[58,86],"selected.":[59],"Then,":[60],"deep":[62],"neural":[63],"network":[64],"is":[65,194],"applied":[66,139,176],"constructing":[68,207],"reliable":[70],"predictor.":[71],"Findings":[72],"Although":[73],"many":[74],"statistical":[75,103],"approaches":[76],"have":[77],"been":[78],"proposed":[79,100],"tackling":[81],"issue,":[83],"better":[84,160],"forecasts":[85],"viable":[87],"by":[88],"using":[89],"abilities":[91],"machine":[93],"learning":[94],"algorithms.":[95],"Results":[96],"indicate":[97],"that":[98],"approach":[101,173],"outperforms":[102],"alternatives":[104],"available":[105],"such":[109],"as":[110],"multiple":[111],"linear":[112,122,133],"regression,":[113,120],"autoregressive":[114],"integrated":[115],"moving":[116],"average,":[117],"support":[118],"vector":[119],"generalized":[121,124],"models,":[123],"estimating":[125],"equations,":[126],"seasonal":[127],"ARIMA":[128,131],"combined":[130],"regression.":[134],"Research":[135],"limitations/implications":[136],"The":[137,171],"authors":[138],"single":[144],"ED":[145],"forecast":[147],"patient":[148,214],"visits.":[149],"Applying":[150],"same":[152,172],"method":[153],"different":[155],"may":[157],"give":[158],"understanding":[161],"performance":[164],"model":[167],"authors.":[170],"can":[174],"be":[175],"any":[178],"other":[179],"after":[182],"some":[183],"minor":[184],"modifications.":[185],"Originality/value":[186],"To":[187],"best":[189],"knowledge,":[192],"first":[196],"propose":[199],"use":[201],"long":[203],"short-term":[204],"memory":[205],"predictor":[209],"number":[212],"visits":[215],"EDs.":[217]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2982310095","counts_by_year":[{"year":2024,"cited_by_count":7},{"year":2023,"cited_by_count":3},{"year":2022,"cited_by_count":3},{"year":2021,"cited_by_count":7},{"year":2020,"cited_by_count":4},{"year":2019,"cited_by_count":1}],"updated_date":"2024-12-29T02:00:25.300236","created_date":"2019-11-08"}