{"id":"https://openalex.org/W3111009810","doi":"https://doi.org/10.1108/jsit-12-2019-0262","title":"Forecasting of stock price index using support vector regression with multivariate empirical mode decomposition","display_name":"Forecasting of stock price index using support vector regression with multivariate empirical mode decomposition","publication_year":2020,"publication_date":"2020-12-03","ids":{"openalex":"https://openalex.org/W3111009810","doi":"https://doi.org/10.1108/jsit-12-2019-0262","mag":"3111009810"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1108/jsit-12-2019-0262","pdf_url":null,"source":{"id":"https://openalex.org/S39868070","display_name":"Journal of Systems and Information Technology","issn_l":"1328-7265","issn":["1328-7265","1758-8847"],"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310319811","host_organization_name":"Emerald Publishing Limited","host_organization_lineage":["https://openalex.org/P4310319811"],"host_organization_lineage_names":["Emerald Publishing Limited"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"journal-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5103197545","display_name":"Yanmei Huang","orcid":"https://orcid.org/0000-0001-5075-9654"},"institutions":[],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Yanmei Huang","raw_affiliation_strings":["Center for Big Data Analytics, Jiangxi University of Engineering, Xinyu, China"],"affiliations":[{"raw_affiliation_string":"Center for Big Data Analytics, Jiangxi University of Engineering, Xinyu, China","institution_ids":[]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5102500178","display_name":"Changrui Deng","orcid":null},"institutions":[],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Changrui Deng","raw_affiliation_strings":["Center for Big Data Analytics, Jiangxi University of Engineering, Xinyu, China"],"affiliations":[{"raw_affiliation_string":"Center for Big Data Analytics, Jiangxi University of Engineering, Xinyu, China","institution_ids":[]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100339502","display_name":"Xiaoyuan Zhang","orcid":"https://orcid.org/0000-0002-8156-6414"},"institutions":[],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Xiaoyuan Zhang","raw_affiliation_strings":["Center for Big Data Analytics, Jiangxi University of Engineering, Xinyu, China"],"affiliations":[{"raw_affiliation_string":"Center for Big Data Analytics, Jiangxi University of Engineering, Xinyu, China","institution_ids":[]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5027578915","display_name":"Yukun Bao","orcid":"https://orcid.org/0000-0001-5418-8799"},"institutions":[],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Yukun Bao","raw_affiliation_strings":["Center for Big Data Analytics, Jiangxi University of Engineering, Xinyu, China"],"affiliations":[{"raw_affiliation_string":"Center for Big Data Analytics, Jiangxi University of Engineering, Xinyu, China","institution_ids":[]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.949,"has_fulltext":false,"cited_by_count":11,"citation_normalized_percentile":{"value":0.889909,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":86,"max":87},"biblio":{"volume":"24","issue":"2","first_page":"75","last_page":"95"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11326","display_name":"Stock Market Forecasting Methods","score":0.9994,"subfield":{"id":"https://openalex.org/subfields/1803","display_name":"Management Science and Operations Research"},"field":{"id":"https://openalex.org/fields/18","display_name":"Decision Sciences"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}},"topics":[{"id":"https://openalex.org/T11326","display_name":"Stock Market Forecasting Methods","score":0.9994,"subfield":{"id":"https://openalex.org/subfields/1803","display_name":"Management Science and Operations Research"},"field":{"id":"https://openalex.org/fields/18","display_name":"Decision Sciences"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}},{"id":"https://openalex.org/T11059","display_name":"Market Dynamics and Volatility","score":0.9945,"subfield":{"id":"https://openalex.org/subfields/2002","display_name":"Economics and Econometrics"},"field":{"id":"https://openalex.org/fields/20","display_name":"Economics, Econometrics and Finance"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}},{"id":"https://openalex.org/T11918","display_name":"Forecasting Techniques and Applications","score":0.993,"subfield":{"id":"https://openalex.org/subfields/1803","display_name":"Management Science and Operations Research"},"field":{"id":"https://openalex.org/fields/18","display_name":"Decision Sciences"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/univariate","display_name":"Univariate","score":0.8240883},{"id":"https://openalex.org/keywords/composite-index","display_name":"Composite index","score":0.6969994},{"id":"https://openalex.org/keywords/stock","display_name":"Stock (firearms)","score":0.41406775}],"concepts":[{"id":"https://openalex.org/C199163554","wikidata":"https://www.wikidata.org/wiki/Q1681619","display_name":"Univariate","level":3,"score":0.8240883},{"id":"https://openalex.org/C2778098375","wikidata":"https://www.wikidata.org/wiki/Q19596433","display_name":"Composite index","level":3,"score":0.6969994},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.6722884},{"id":"https://openalex.org/C161584116","wikidata":"https://www.wikidata.org/wiki/Q1952580","display_name":"Multivariate statistics","level":2,"score":0.61082876},{"id":"https://openalex.org/C200870193","wikidata":"https://www.wikidata.org/wiki/Q11691","display_name":"Stock exchange","level":2,"score":0.5751742},{"id":"https://openalex.org/C12267149","wikidata":"https://www.wikidata.org/wiki/Q282453","display_name":"Support vector machine","level":2,"score":0.56142145},{"id":"https://openalex.org/C149782125","wikidata":"https://www.wikidata.org/wiki/Q160039","display_name":"Econometrics","level":1,"score":0.54012805},{"id":"https://openalex.org/C2777382242","wikidata":"https://www.wikidata.org/wiki/Q6017816","display_name":"Index (typography)","level":2,"score":0.5143822},{"id":"https://openalex.org/C204036174","wikidata":"https://www.wikidata.org/wiki/Q909380","display_name":"Stock (firearms)","level":2,"score":0.41406775},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.3803808},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.26431534},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.20838225},{"id":"https://openalex.org/C162324750","wikidata":"https://www.wikidata.org/wiki/Q8134","display_name":"Economics","level":0,"score":0.1704438},{"id":"https://openalex.org/C10138342","wikidata":"https://www.wikidata.org/wiki/Q43015","display_name":"Finance","level":1,"score":0.13610724},{"id":"https://openalex.org/C136764020","wikidata":"https://www.wikidata.org/wiki/Q466","display_name":"World Wide Web","level":1,"score":0.0},{"id":"https://openalex.org/C78519656","wikidata":"https://www.wikidata.org/wiki/Q101333","display_name":"Mechanical engineering","level":1,"score":0.0},{"id":"https://openalex.org/C127413603","wikidata":"https://www.wikidata.org/wiki/Q11023","display_name":"Engineering","level":0,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1108/jsit-12-2019-0262","pdf_url":null,"source":{"id":"https://openalex.org/S39868070","display_name":"Journal of Systems and Information Technology","issn_l":"1328-7265","issn":["1328-7265","1758-8847"],"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310319811","host_organization_name":"Emerald Publishing Limited","host_organization_lineage":["https://openalex.org/P4310319811"],"host_organization_lineage_names":["Emerald Publishing Limited"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":38,"referenced_works":["https://openalex.org/W1966577984","https://openalex.org/W2007369711","https://openalex.org/W2010628845","https://openalex.org/W2014341469","https://openalex.org/W2015799639","https://openalex.org/W2017812666","https://openalex.org/W2017950254","https://openalex.org/W2019851168","https://openalex.org/W2027613592","https://openalex.org/W2031489288","https://openalex.org/W2032170121","https://openalex.org/W2036950209","https://openalex.org/W2040388435","https://openalex.org/W2043693856","https://openalex.org/W2073464491","https://openalex.org/W2079867385","https://openalex.org/W2081007419","https://openalex.org/W2089822378","https://openalex.org/W2120390927","https://openalex.org/W2121548252","https://openalex.org/W2125804487","https://openalex.org/W2130426550","https://openalex.org/W2145316193","https://openalex.org/W2165758382","https://openalex.org/W2172064003","https://openalex.org/W2184782452","https://openalex.org/W2268394201","https://openalex.org/W2321143615","https://openalex.org/W2610531472","https://openalex.org/W2737305231","https://openalex.org/W2756338126","https://openalex.org/W2792756227","https://openalex.org/W2807773366","https://openalex.org/W2822523832","https://openalex.org/W2899308433","https://openalex.org/W3124259626","https://openalex.org/W3141408015","https://openalex.org/W3189771453"],"related_works":["https://openalex.org/W4255873683","https://openalex.org/W3125276240","https://openalex.org/W3124118004","https://openalex.org/W3124016299","https://openalex.org/W3122452975","https://openalex.org/W3121151732","https://openalex.org/W2613917502","https://openalex.org/W2033490192","https://openalex.org/W2024770159","https://openalex.org/W1505913416"],"abstract_inverted_index":{"Purpose":[0],"Despite":[1],"the":[2,15,36,44,50,65,73,83,90,92,100,116,127,131,134,137,140,144,173,178,187,195,206,210,220,228,236,251,255],"widespread":[3],"use":[4],"of":[5,17,30,46,67,147,180,216,230,238],"univariate":[6,232],"empirical":[7,19],"mode":[8,20],"decomposition":[9,21],"(EMD)":[10],"in":[11,48,214],"financial":[12,256],"market":[13],"forecasting,":[14],"application":[16],"multivariate":[18],"(MEMD)":[22],"has":[23],"not":[24],"been":[25],"fully":[26],"investigated.":[27],"The":[28,191],"purpose":[29],"this":[31,186],"study":[32],"is":[33],"to":[34,63,124,156,171,250],"forecast":[35,175],"stock":[37,80,149],"price":[38,142,150],"index":[39,88,95,105],"more":[40],"accurately,":[41],"relying":[42],"on":[43,177],"capability":[45],"MEMD":[47,120],"modeling":[49,117,197],"dependency":[51],"between":[52],"relevant":[53,128],"variables.":[54],"Design/methodology/approach":[55],"Quantitative":[56],"and":[57,85,99,143,165,245],"comprehensive":[58],"assessments":[59,74],"were":[60,75],"carried":[61],"out":[62],"compare":[64],"performance":[66],"some":[68],"selected":[69,201],"models.":[70,203],"Data":[71],"for":[72,161,241,254],"collected":[76],"from":[77,89,96,106],"three":[78],"major":[79],"exchanges,":[81],"namely,":[82],"standard":[84],"poor":[86],"500":[87],"USA,":[91],"Hang":[93],"Seng":[94],"Hong":[97],"Kong":[98],"Shanghai":[101],"Stock":[102],"Exchange":[103],"composite":[104],"China.":[107],"MEMD-based":[108,196],"support":[109],"vector":[110],"regression":[111],"(SVR)":[112],"was":[113,121,154,169],"used":[114,155,170],"as":[115],"framework,":[118],"where":[119],"first":[122],"introduced":[123],"simultaneously":[125],"decompose":[126],"covariates,":[129],"including":[130],"opening":[132],"price,":[133,136,139],"highest":[135],"lowest":[138],"closing":[141],"trading":[145],"volume":[146],"a":[148],"index.":[151],"Then,":[152],"SVR":[153,167],"set":[157],"up":[158],"forecasting":[159,243],"models":[160,207,233],"each":[162,181],"component":[163],"decomposed":[164],"another":[166],"model":[168,212],"generate":[172],"final":[174],"based":[176],"forecasts":[179],"component.":[182],"This":[183,225],"paper":[184],"named":[185],"MEMD-SVR-SVR":[188,211],"model.":[189],"Findings":[190],"results":[192],"show":[193],"that":[194],"framework":[198],"outperforms":[199],"other":[200],"competing":[202],"As":[204],"per":[205],"using":[208],"MEMD,":[209],"excels":[213],"terms":[215],"prediction":[217],"accuracy":[218,244],"across":[219],"various":[221],"data":[222],"sets.":[223],"Originality/value":[224],"research":[226],"extends":[227],"literature":[229],"EMD-based":[231],"by":[234],"considering":[235],"scenario":[237],"multiple":[239],"variables":[240],"improving":[242],"simplifying":[246],"computability,":[247],"which":[248],"contributes":[249],"analytics":[252],"pool":[253],"analysis":[257],"community.":[258]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W3111009810","counts_by_year":[{"year":2025,"cited_by_count":1},{"year":2024,"cited_by_count":4},{"year":2023,"cited_by_count":2},{"year":2022,"cited_by_count":3},{"year":2021,"cited_by_count":1}],"updated_date":"2025-04-19T14:49:44.318050","created_date":"2020-12-21"}