{"id":"https://openalex.org/W4390972163","doi":"https://doi.org/10.1108/dta-07-2023-0377","title":"A hybrid method for forecasting coal price based on ensemble learning and deep learning with data decomposition and data enhancement","display_name":"A hybrid method for forecasting coal price based on ensemble learning and deep learning with data decomposition and data enhancement","publication_year":2024,"publication_date":"2024-01-18","ids":{"openalex":"https://openalex.org/W4390972163","doi":"https://doi.org/10.1108/dta-07-2023-0377"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1108/dta-07-2023-0377","pdf_url":null,"source":{"id":"https://openalex.org/S4210171756","display_name":"Data Technologies and Applications","issn_l":"2514-9288","issn":["2514-9288","2514-9318"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310319811","host_organization_name":"Emerald Publishing Limited","host_organization_lineage":["https://openalex.org/P4310319811"],"host_organization_lineage_names":["Emerald Publishing Limited"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"journal-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5077270486","display_name":"Jing Tang","orcid":"https://orcid.org/0000-0002-0785-707X"},"institutions":[{"id":"https://openalex.org/I130541836","display_name":"Beijing Institute of Petrochemical Technology","ror":"https://ror.org/025s55q11","country_code":"CN","type":"education","lineage":["https://openalex.org/I130541836"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Jing Tang","raw_affiliation_strings":["Beijing Institute of Petrochemical Technology Beijing, China"],"affiliations":[{"raw_affiliation_string":"Beijing Institute of Petrochemical Technology Beijing, China","institution_ids":["https://openalex.org/I130541836"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5090507151","display_name":"Yida Guo","orcid":"https://orcid.org/0000-0001-9410-5353"},"institutions":[{"id":"https://openalex.org/I99065089","display_name":"Tsinghua University","ror":"https://ror.org/03cve4549","country_code":"CN","type":"education","lineage":["https://openalex.org/I99065089"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Yida Guo","raw_affiliation_strings":["Tsinghua University Beijing, China"],"affiliations":[{"raw_affiliation_string":"Tsinghua University Beijing, China","institution_ids":["https://openalex.org/I99065089"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5018469551","display_name":"Yilin Han","orcid":"https://orcid.org/0009-0008-2926-871X"},"institutions":[{"id":"https://openalex.org/I4210093776","display_name":"DHC Software (China)","ror":"https://ror.org/00kn8e190","country_code":"CN","type":"company","lineage":["https://openalex.org/I4210093776"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Yilin Han","raw_affiliation_strings":["Yuanguang Software Co., Ltd. Zhuhai, China"],"affiliations":[{"raw_affiliation_string":"Yuanguang Software Co., Ltd. Zhuhai, China","institution_ids":["https://openalex.org/I4210093776"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":3,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.0,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":83},"biblio":{"volume":"58","issue":"3","first_page":"472","last_page":"495"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11052","display_name":"Energy Load and Power Forecasting","score":0.9985,"subfield":{"id":"https://openalex.org/subfields/2208","display_name":"Electrical and Electronic Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11052","display_name":"Energy Load and Power Forecasting","score":0.9985,"subfield":{"id":"https://openalex.org/subfields/2208","display_name":"Electrical and Electronic Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12368","display_name":"Grey System Theory Applications","score":0.994,"subfield":{"id":"https://openalex.org/subfields/1803","display_name":"Management Science and Operations Research"},"field":{"id":"https://openalex.org/fields/18","display_name":"Decision Sciences"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}},{"id":"https://openalex.org/T11059","display_name":"Market Dynamics and Volatility","score":0.9878,"subfield":{"id":"https://openalex.org/subfields/2002","display_name":"Economics and Econometrics"},"field":{"id":"https://openalex.org/fields/20","display_name":"Economics, Econometrics and Finance"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/ensemble-learning","display_name":"Ensemble Learning","score":0.654462},{"id":"https://openalex.org/keywords/feature","display_name":"Feature (linguistics)","score":0.42661178},{"id":"https://openalex.org/keywords/feature-engineering","display_name":"Feature Engineering","score":0.4253544}],"concepts":[{"id":"https://openalex.org/C45942800","wikidata":"https://www.wikidata.org/wiki/Q245652","display_name":"Ensemble learning","level":2,"score":0.654462},{"id":"https://openalex.org/C108583219","wikidata":"https://www.wikidata.org/wiki/Q197536","display_name":"Deep learning","level":2,"score":0.63733834},{"id":"https://openalex.org/C9357733","wikidata":"https://www.wikidata.org/wiki/Q6878417","display_name":"Missing data","level":2,"score":0.6289909},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.5878923},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.56446826},{"id":"https://openalex.org/C518851703","wikidata":"https://www.wikidata.org/wiki/Q24489","display_name":"Coal","level":2,"score":0.55927145},{"id":"https://openalex.org/C2776401178","wikidata":"https://www.wikidata.org/wiki/Q12050496","display_name":"Feature (linguistics)","level":2,"score":0.42661178},{"id":"https://openalex.org/C2778827112","wikidata":"https://www.wikidata.org/wiki/Q22245680","display_name":"Feature engineering","level":3,"score":0.4253544},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.41504657},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.3886321},{"id":"https://openalex.org/C127413603","wikidata":"https://www.wikidata.org/wiki/Q11023","display_name":"Engineering","level":0,"score":0.18647903},{"id":"https://openalex.org/C41895202","wikidata":"https://www.wikidata.org/wiki/Q8162","display_name":"Linguistics","level":1,"score":0.0},{"id":"https://openalex.org/C138885662","wikidata":"https://www.wikidata.org/wiki/Q5891","display_name":"Philosophy","level":0,"score":0.0},{"id":"https://openalex.org/C548081761","wikidata":"https://www.wikidata.org/wiki/Q180388","display_name":"Waste management","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1108/dta-07-2023-0377","pdf_url":null,"source":{"id":"https://openalex.org/S4210171756","display_name":"Data Technologies and Applications","issn_l":"2514-9288","issn":["2514-9288","2514-9318"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310319811","host_organization_name":"Emerald Publishing Limited","host_organization_lineage":["https://openalex.org/P4310319811"],"host_organization_lineage_names":["Emerald Publishing Limited"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"score":0.46,"id":"https://metadata.un.org/sdg/9","display_name":"Industry, innovation and infrastructure"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":31,"referenced_works":["https://openalex.org/W1189233655","https://openalex.org/W2055221518","https://openalex.org/W2321536237","https://openalex.org/W2345862676","https://openalex.org/W2465667919","https://openalex.org/W2543387907","https://openalex.org/W2586354609","https://openalex.org/W2896761929","https://openalex.org/W2948535221","https://openalex.org/W2965530663","https://openalex.org/W2971689447","https://openalex.org/W2973508239","https://openalex.org/W3011822060","https://openalex.org/W3019036793","https://openalex.org/W3097950615","https://openalex.org/W3114493467","https://openalex.org/W3117238929","https://openalex.org/W3117321808","https://openalex.org/W3125211436","https://openalex.org/W3130808753","https://openalex.org/W3155933005","https://openalex.org/W4205120835","https://openalex.org/W4205282669","https://openalex.org/W4229440842","https://openalex.org/W4283727603","https://openalex.org/W4293870418","https://openalex.org/W4316927690","https://openalex.org/W4318042223","https://openalex.org/W4322761575","https://openalex.org/W4328118464","https://openalex.org/W4365511087"],"related_works":["https://openalex.org/W4380150146","https://openalex.org/W4308112567","https://openalex.org/W4283773154","https://openalex.org/W3162132941","https://openalex.org/W3139174110","https://openalex.org/W3128189270","https://openalex.org/W3124943098","https://openalex.org/W3034267371","https://openalex.org/W3024870410","https://openalex.org/W2410652950"],"abstract_inverted_index":{"Purpose":[0],"Coal":[1],"is":[2],"a":[3,23],"critical":[4],"global":[5,45],"energy":[6],"source,":[7],"and":[8,40,64,74,84,95,124,141,155,179,201],"fluctuations":[9],"in":[10,86,146,193],"its":[11,199],"price":[12,30,53,153,164],"significantly":[13],"impact":[14],"related":[15],"enterprises'":[16],"profitability.":[17],"This":[18],"study":[19],"aims":[20],"to":[21,32,106,198],"develop":[22],"robust":[24],"model":[25],"for":[26,37,44,91,97,191],"predicting":[27],"the":[28,69,108,129,134,150,183,186],"coal":[29,34,52,156,163],"index":[31,154],"enhance":[33],"purchase":[35],"strategies":[36],"coal-consuming":[38],"enterprises":[39],"provide":[41],"crucial":[42],"information":[43],"carbon":[46],"emission":[47],"reduction.":[48],"Design/methodology/approach":[49],"The":[50,101,115,161],"proposed":[51,162],"forecasting":[54,165],"system":[55,102,166,184],"combines":[56,119],"data":[57,76,83,94,172],"decomposition,":[58,173],"semi-supervised":[59,174],"feature":[60,175],"engineering,":[61,176],"ensemble":[62,116,177],"learning":[63,105,178,190],"deep":[65,180],"learning.":[66,181],"It":[67,137],"addresses":[68],"challenge":[70],"of":[71,82,110,188],"merging":[72],"low-resolution":[73],"high-resolution":[75],"by":[77],"adaptively":[78],"combining":[79],"both":[80],"types":[81],"filling":[85,109,192],"missing":[87,93,99,112,195],"gaps":[88],"through":[89],"interpolation":[90],"internal":[92],"self-supervision":[96],"initiate/terminal":[98],"data.":[100,113],"employs":[103],"self-supervised":[104,189],"complete":[107],"complex":[111,194],"Findings":[114],"model,":[117],"which":[118],"long":[120],"short-term":[121],"memory,":[122],"XGBoost":[123],"support":[125],"vector":[126],"regression,":[127],"demonstrated":[128],"best":[130],"prediction":[131],"performance":[132],"among":[133],"tested":[135],"models.":[136],"exhibited":[138],"superior":[139],"accuracy":[140],"stability":[142],"across":[143],"multiple":[144],"indices":[145],"two":[147],"datasets,":[148],"namely":[149],"Bohai-Rim":[151],"steam-coal":[152],"daily":[157],"settlement":[158],"price.":[159],"Originality/value":[160],"stands":[167],"out":[168],"as":[169],"it":[170],"integrates":[171],"Moreover,":[182],"pioneers":[185],"use":[187],"data,":[196],"contributing":[197],"originality":[200],"effectiveness.":[202]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4390972163","counts_by_year":[],"updated_date":"2025-01-20T05:46:09.450225","created_date":"2024-01-19"}